Micro Pumping And Particle Separation Collection Using Oscillating Bubbles
Slide1.JPG
Slide2.JPG
Slide3.JPG
Slide4.JPG
Slide5.JPG
Slide6.JPG
Slide7.JPG
Slide8.JPG
Slide9.JPG
Slide10.JPG
Slide11.JPG
Slide12.JPG
Slide13.JPG
Slide14.JPG
Slide15.JPG
Slide16.JPG
Slide17.JPG
Slide18.JPG
Slide19.JPG
Slide20.JPG
Slide21.JPG
Slide22.JPG
Slide23.JPG
Slide24.JPG
Slide25.JPG
Slide26.JPG
Slide27.JPG
Slide28.JPG
Slide29.JPG
Slide30.JPG
Slide31.JPG
Slide32.JPG
Slide33.JPG

reference

1. Lohse, D., Bubble puzzles. Phys. Today, 2003. 56: p. 36.
2. Ajaev, V.S. and G. M. Homsy, Modeling shapes and dynamics of confined bubbles. Annu. Rev. Fluid Mech., 2006. 38: p. 277–307.
3. Gravesen, P., J. Branebjerg, and O. S. Jensen, Microfluidics–a review. J. Micromech. Microeng., 1993. 3: p. 168–182.
4. Jensen, M.J., G. Goranovic, and H. Bruus, The clogging pressure of bubbles in hydrophilic microchannel contractions, . J. Micromech. Microeng., 2004. 14: p. 876–883.
5. Elwenspoek, M., et al., Towards integrated microliquid handling systems. J. Micromech. Microeng., 1994: p. 227–245.
6. Nielsen, N.J., History of thinkjet printhead development, . Hewlett–Packard J., 1985. 36: p. 4-10.
7. L. W. Lin, Microscale thermal bubble formation: Thermophysical phenomena and applications,. Microscale Thermophys. Eng., 1998. 2: p. 71–85.
8. Jr-Hung Tsai and L. Lin, A thermal-bubble-actuated micronozzle-diffuser pump. Journal of Microelectromechanical Systems, 2002. 11(6): p. 665-671.
9. Olsson A, S. G, and S. E, A valve-less planar fluid pump with 2 pump chambers
Sensors Actuators A 1995. 47: p. 549–556.
10. Yuan, H. and A. Prosperetti, The pumping effect of growing and collapsing bubbles in a tube J. Micromech. Microeng, 1999. 9: p. 402–413.
11. TK, J. and K. CJ, Valveless pumping using traversing vapor bubbles in microchannels. . J Appl Phys 1998. 83: p. 5658-5664.
12. Taylor, R.S. and C. Hnatovsky, Trapping and mixing of particles in water using a microbubble attached to an nsom fiber probe. Opt. Express, 2004. 12: p. 916–928.
13. R. B. Maxwell, et al., A microbubble-powered bioparticle actuator.
J. Microelectromech. Syst., 2003. 12: p. 630–640.
14. S. Z. Hua, et al., Microfluidic actuation using electrochemically generated bubbles. Anal. Chem., 2002. 74: p. 6392–6396.
15. D. A. Ateya, A.A. Shah, and S. Z. Hua, Impedance-based response of an electrolytic gas bubble to pressure in microfluidic channels,. Sens. Actuators, A,, 2005. 122: p. 235–241.
16. D. A. Ateya, A.A. Shah, and S. Z. Hua, An electrolytically actuated micropump, . Rev. Sci. Instrum., 2004. 75: p. 915–920.
17. Hua, S.Z., et al., Microfluidic actuation using electrochemically generated bubbles, . Anal. Chem., 2002. 74: p. 6392–6396.
18. Leighton, T.G., The acoustic bubble. 1994: Academic Press, London.
19. Elder, S.A., Cavitation Microstreaming. J. Acoust. Soc. Am., 1959(31): p. 54-64.
20. Paul Tho, R. Manasseh, and A. Ooi, Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech., 2007(576): p. 191-233.
21. Ketterling, J.A. and J. Mamou, Excitation of polymer-shelled contrast agents with high-frequency ultrasound. J. Acoust. Soc. Am., 2006. 121(1): p. EL48-EL53.
22. Dayton, P.A., et al., A preliminary evaluation of the effects of primary and secondaryradiation forces on acoustic contrast agents. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1997. 44(6): p. 1264-1277.
23. Miller, D.L. and J. Quddus, Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound in Medicine & Biology, 2000. 26(4): p. 661-667.
24. R. Bekeredjian, P. A. Grayburn, and R. V. Shohet, Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. Journal of the American College of Cardiology, 2005. 45(3): p. 329-335.
25. P. Marmottant, S.H., Controlled vesicle deformation and lysis by single oscillating bubbles. Nature, 2003(12): p. 153-156.
26. Marmottant, P. and S. Hilgenfeldt. A bubble-driven microfluidic transport element for bioengineering. in Proc. Natl. Acad. Sci. 2004. U.S.A.
27. Chung, S.K., et al. Micro Bubble Fluidics by EWOD and Ultrasonic Excitation for Micro Bubble Tweezers. in 20th International Conference on Micro Electro Mechanical Systems (MEMS 2007). 2007.
28. Zhao, Y. and S.K. Cho, Micro Bubble Manipulation by Electrowetting on Dielectric: transporting, splitting, merging and eliminating of bubbles. Journal of Lab a Chip, 2007. 7(2): p. 273-280.
29. Kuznetsova, L.A., et al., Cavitation bubble-driven cell and particle behavior in an ultrasound standing wave. J. Acoust. Soc. Am., 2005. 117(1): p. 104-112.
30. Laser, D.J. and J.G. Santiago, A review of micropumps. Journal of Micromechanics and Microengineering, 2004(6): p. R35.
31. Tsai, N.-C. and C.-Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sensors and Actuators A, 2007. 134: p. 555-564.
32. Robin H. Liu, a.J.Y., a Maciej Z. Pindera, Mahesh Athavale and Piotr Grodzinski, Bubble-induced acoustic micromixing. Lab Chip, 2002(2): p. 151-157.
33. Wu, N.-T.N.a.Z., Micromixers—a review. J. Micromech. Microeng., 2005. 15: p. R1-R16.
34. Garstecki, P., et al., Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab Chip, 2006. 6: p. 207-212.
35. Oh, K.W. and C.H. Ahn, A review of microvalves. J. Micromech. Microeng., 2006. 16: p. R13-39.
36. Cho, S.K. and C.-J.C. Kim. Particle Separation and Concentration Control for Digital Microfluidics. in The 16th Annual IEEE International Conference on MEMS (MEMS 2003). 2003. Kyoto, Japan.
37. Y. Zhao, U.-C. Yi, and S. K. Cho, Micro Particle Concentration and Separation by Travelling Wave Dielectrophoresis (twDEP) for Digital Microfluidics. Journal of Microelectromechanical Systems, 2007. 16(6): p. 1472-1481.
38. Cho, Y.Z.a.S.K., Microparticle Sampling by Electrowetting-Actuated Droplet Sweeping. Lab Chip, 2006. 6: p. 137-144.
39. Zhao, Y., et al. Micro Particle Sampling on Microfabricated Perforated Filter Membranes. in The 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2007). 2007. Paris, France.
40. Smits, J.G., Piezoelectric micropump with 3 valves working peristaltically. Sensors Actuators A 1990. 21: p. 203–6.
41. Richter M, L. R, and W. P, Robust design of gas and liquid micropumps Sensors Actuators A 1998. 68: p. 480–486.
42. Zengerle R, U.J., Kluge S, Richter M and Richter A, A bidirectional silicon micropump Sensors Actuators A, 1995. 50: p. 81–86.
43. van de Pol F C M, et al., A thermopneumatic micropump based on micro-engineering techniques Sensors Actuators A, 1990 21: p. 198–202.
44. C, J.O. and Y.S. S, Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm Sensors Actuators A 2000. 83: p. 249–55.
45. Benard W L, K.H., Heuer A H and Huff M A, Thin-film shape-memory alloy actuated micropumps. J. Microelectromech. Syst., 1998. 7: p. 245–51.
46. Bohm S, O.W.a.B.P., A plastic micropump constructed with conventional techniques and materials. Sensors Actuators A 1999. 77 p. 223–228.
47. Yun K-S, C.I.-J., Bu J-U, Kim C-J and Yoon E A surface-tension driven micropump for low-voltage and low-power operations
J. Microelectromech. Syst., 2002. 11: p. 454–61.
48. E, K.D. and T.S. M, Patterning liquid flow on the microscopic scale Nature 1999. 402: p. 794–7.
49. S, S.T. and B.M. A, Thermocapillary pumping of discrete drops in microfabricated analysis devices AIChE J. , 1999. 45: p. 350–66.
50. Richter A, et al., A micromachined electrohydrodynamic (EHD) pump. Sensors Actuators A 1991. 29: p. 159–168.
51. Darabi J, O.M. M, and D. D, An electrohydrodynamic polarization micropump for electronic cooling J. Microelectromech. Syst. , 2001 10: p. 98–106.
52. Jacobson S C, et al., Open-channel electrochromatography on a microchip. Anal. Chem., 1994. 66: p. 2369-73.
53. Laser, D.J., et al. SILICON ELECTROOSMOTIC MICROPUMPS FOR INTEGRATED CIRCUIT THERMAL MANAGEMENT. in Proc. Transducers'03 (Boston, MA). 2003.
54. S, J.J. and L.S. S, Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors Actuators A 2000. 80: p. 84–9.
55. V, L.A. and L.A. P, An AC magnetohydrodynamic micropump Sensors Actuators B 2000. 63: p. 178–185.
56. R J Dijkink, J.P.v.d.D., C D Ohl and A Prosperetti, The ‘acoustic scallop’: a bubble-powered actuator. J. Micromech. Microeng., 2006(16): p. 1653-1659.
57. Minnaert, M., On musical air-bubbles and the sound of running water. Philosophical Magazine, 1933. 16: p. 235–248.
58. Xu, J. and D. Attinger, Acoustic excitation of superharmonic capillary waves on a meniscus in a planar microgeometry. PHYSICS OF FLUIDS, 2007. 19: p. 108107.
59. Marmottant, P. and S. Hilgenfeldt, A bubble-driven microfluidic transport element for bioengineering. Proceedings of the National Academy of Sciences, 2004. 101(26): p. 9523-9527.
60. Ho, C.T., et al., Micromachined electrochemical T-switches for cell sorting applications. Lab on a Chip, 2005. 5(11): p. 1248-1258.
61. K. Yanagiada, et al., The usefulness of a piezomicromanipulator in intracytoplasmic sperm injection in humans. Human Reproduction, 1998. 14(2): p. 448-453.
62. T. Nakayama, et al., A new assisted hatching technique using a piezo-micromanipulator. Fertility and Sterility, 1998. 69: p. 784-788.
63. Ashkin, A., Applications of Laser Radiation Pressure Science, 1980. 210(4474): p. 1081-1088.
64. Svoboda K and B. SM, Biological applications of optical forces. Annu Rev Biophys Biomol Struct., 1994. 23: p. 247-85.
65. Voldman J, et al., A microfabrication-based dynamic array cytometer. Anal Chem, 2002. 74(16): p. 3984-3990.
66. Schnelle T, et al., Three-dimensional electric field traps for manipulation of cells—calculation and experimental verification. Biochim Biophys Acta, 1993. 1157(2): p. 127-40.
67. Y., Y. and N. Y., Micro particle trapping by opposite phases ultrasonic travelling waves Ultrasonics,, 1998. 36(8): p. 873-878.
68. Yamanouchi, M.T.a.K., Ultrasonic Micromanipulation of Small Particles in Liquid Jpn. J. Appl. Phys, 1994. 33: p. 3045-3047.
69. Cho, C.-C., R.M. Wallace, and L.A. Files-Sesler, Patterning and etching of amorphous teflon films Journal of Electronic Materials, 1994. 23(8): p. 827-830.
70. D, C.-Y., M. D, and G.B. K. A novel PDMS microfluidic spotter for fabrication of protein chips and microarrays in Proc. SPIE 2005.
71. Xia, Y. and G.M. Whitesides, SOFT LITHOGRAPHY. Annu. Rev. Mater. Sci., 1998. 28: p. 153-184.
72. Lippmann, M.G., Relations entre les phénomènes electriques et capillaires. Ann. Chim. Phys., 1875. 5: p. 494-549.
73. J. Lee, H.M., et al., Addressable micro liquid handling by electric control of surface tension. Proc. IEEE Int. Conf. MEMS, 2001.
74. J. Lee, et al., Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens. Actuators, Phys. A, 2002. 95: p. 259-268.
75. S. K. Chung, Y.Z., and S. K. Cho, On-chip creation and elimination of microbubbles integrated with EWOD actuations toward micro-object manipulator. Journal of Micromechanics and Microengineering 2008: p. in press.
76. Barry R. Lutz, Jian Chen, and D.T. Schwartz, Hydrodynamic Tweezers: 1. Noncontact Trapping of Single Cells Using Steady Streaming Microeddies. Anal. Chem., 2006. 78: p. 5429-5434.
77. Hu, J., et al., Trapping, transportation and separation of small particles by an acoustic needle Sensors and Actuators A: Physical, 2007. 138(1): p. 187-193.
78. Kao, J., et al., A bubble-powered micro-rotor: conception, manufacturing, assembly, and characterization. Journal of Micromechanics and Microengineering, 2007. 17: p. 2454-2460.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License