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5.2 The Virial Equation of State

As indicated at the beginning of this chapter, the problem of calculating fugacities for
components in a gaseous mixture is equivalent to the problem of establishing a reliable
equation of state for the mixture; once an equation of state exists, fugacities can be
found by straightforward computation. Such computation presents no difficulties in
principle although it may be tedious because it may require trial-and-error calculations.

Many equations of state have been proposed and each year additional ones appear
in the literature, but most of them are either totally or at least partially empirical. All
empirical equations of state are based on more or less arbitrary assumptions that are
not generally valid. Because the constants in an empirical equation of state for a pure
gas have at best only approximate physical significance, it is difficult (and frequently
impossible) to justify mixing rules for expressing the constants of the mixture in terms
of the constants of the pure components that comprise the mixture. As a result, because
mixing rules introduce further arbitrary assumptions, for typical empirical equations of
state, one set of mixing rules may work well for one or several mixtures but poorly for
others (Cullen and Kobe, 1955).

Rn.umig- g
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To ‘calculate with confidence fugacities in a gas mixture, it is advantageous to use
an equation of state where the parameters have physical significance, i.e. where the
parameters can be related directly to intermolecular forces. One equation of state that
possesses this desirable ability is the virial equation of state.

. Figure 5-1 shows a plot of the compressibility factor as a function of density for
hellurrf, methane, and three binary mixtures containing 10, 25 and 50 mole per cent
water in methane. For these systems, the magnitudes of the intermolecular forces differ
appreciably and depend strongly on density (or pressure). The compressibility factor
fo.r the methane mixture containing 10 mol % water deviates little from unity over a
wide range of density, even when compared with the compressibility factors of pure
methane or.helium. However, as density increases, the compressibility factor plot for
the same mixture shows a change in the slope from negative to positive. It is apparent
that, t.o describe systems as those in Fig. 5-1, the parameters that appear in a gas-phase
equation of state must account for a large variety of intermolecular forces that are re-
sponsible for the nonideality of the gas.
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Figure 5-1 Compressibility factors for helium, methane a
; I X nd three water/methane
mixtures as a function of density at 498.15 K (Joffrion and Eubank, 1988).

dati The virial eq}.‘ation of state for nonelectrolyte gases has a sound theoretical foun-
ation, free of arblitr'fxr_y assumptions (Mason and Spurling, 1969). The virial equation
gives the compressibility factor as a power series in the reciprocal molar volume 1/v:"

I - .
Equation (5-9) is frequently written in the equivalent form
. ‘ z=1+Bp+Cp?+ DpP+ ...,
X CI'EBD, the molar densxtly, is Fqual to 1/v. It is most conveniently derived using the grand partition function (see
\pp- ) as, for example, in Hill (1986). The derivation shows that the virial equation is remarkably general, pro-
vided that the intermolecular potential obeys certain well-defined restrictions.
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Pv_ B, C D
Z_.R_T_ +;—+v_2+'y3 +... (5-9)

In Eq. (5-9), B is the second virial coefficient, C is the third virial coefficient, D
is the fourth, and so on. All virial coefficients are independent of pressure or density;
for pure components, they are functions only of the temperature. The unique advantage
of the virial equation follows, as shown later, because there is a theoretical relation
between the virial coefficients and the intermolecular potential. Further, in a gaseous
mixture, virial coefficients depend on composition in an exact and simple manner.

The compressibility factor is sometimes written as a power series in the pressure:

Pv . ' p2 y p3
z=ﬁ=1+3P+CP +D'P"+... (5-10)

where coefficients B’, C’, D', . . . depend on temperature but are independent of pres-
sure or density. For mixtures, however, these coefficients depend on composition in a
more complicated way than do those appearing in Eq. (5-9). Relations between the co-
efficients in Eq. (5-9) and those in Eq. (5-10) are derived in App. C with the results

B'=% (5-11)
_R2
C._f 1)92 (5-12)
RT
_ 3
D ?;135;23 (5-13)

Equation (5-9) is usually superior to Eq. (5-10) in the sense that when the series
is truncated after the third term, the experimental data are reproduccd by Eq. (5-9) over
a wider range of densities (or pressures) than by Eq. (5-10), provided that the virial
coefficients are evaluated as physically significant parameters. In that case, the second
virial coefficient B is properly evaluated from low-pressure P-V-T data by the defini-
tion

B=lim| % (5-14)
p—0\ Op T
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Similarly, the third virial coefficient mu,
s st also b -V-
low pressures. i 1 4opnd » by e evaluated from P-V-T data at

.1 622]
C=lim —[——
3 (5-15)
p—0 2!{ p r

. .Reducnon of P-V-T data to yield second and third virial coefficients is illustrated
in Flg. ’5-2, take:n from the work of Douslin (1962) on methane. In addition to
Douslin’s dala,.Flg. 5-2 also shows experimental results from several other investiga-
tors. The coordinates of Fig. 5-2 follow from rewriting the virial equation in the fom?

Pu C
'U[FT—-I)=B+—+--- (5-16)

(PUIRT - 1) v, cm’mal”!

Molar Density, mol ;!

Figure 5-2 Reduction of P-V-T data for i ird viri
Foionte (data noauction of Sourae methane to yield second and third virial coef-

While%/};:nfxsog\irmal data. arf:.p]oued as shown, the intercept on the ordinate gives B,
e s toyn d;(.)rf) the llFmtmg slope as !/’u — 0. For mixtures, the same procedure
: » but in addition to 159therrpal conditions, each plot must also be at constant
omposition. An example is given in Fig. 5-3 for the mixture methanol/methyl acetate

at several temperatures (OIf et al., 1989).
peratu?; 1il:us'trat10'n ;f the applicability of Egs. (5-9) and (5-10) at two different tem-
pron (MiChgllYen 1111 1gs. 5-4 and 5-5,. based on Michels’ accurate volumetric data for
T 1986; et %.,' 1960; Guggenheim and McGlashan, 1960; Munn, 1964; Munn et
Cu],at ; o 1 .a). sing only low-pressure data along an isotherm, B and C were cal-
ed as indicated by Eq. (5-16). These coefficients were then used to predict the
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compressibility factors at higher pressures (or densities). One prediction is based on
Eq. (5-9) and the other on Eq. (5-10) together with Eqs. (5-11) and (5-12). Experi-
mentally determined isotherms are also shown. In both cases, Eq. (5-9) is more suc-

cessful than Eq. (5-10).}
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Figure 5-3 Reduction of P-V-T data for methanol/methyl acetate to yield second and
third virial coefficients of approximately equimolar mixtures (Olf ef al., 1989).

For many gases, it has been observed that Eq. (5-9), when truncated after the
third term (i.e., when D and all higher virial coefficients are neglected), gives a good
representation of the compressibility factor to about one half the critical density and a
fair representation to nearly the critical density.

For higher densities, the virial equation is of little practical intcrest. Experimental
as well as theoretical methods are not sufficiently developed to obtain useful quantita-
tive results for fourth and higher virial coefficients. The virial equation is, however,
applicable to moderate densities as commonly encountered in many typical vapor-
liquid and vapor-solid equilibria.

The significance of the virial coefficients lies in their direct relation to intermo-
lecular forces. In an ideal gas, the molecules exert no forces on onc another. In the real
world, no ideal gas exists, but when the mean distance between molecules becomes
very large (low density), all gases tend to behave as ideal gascs. This is not surprising
because intermolecular forces diminish rapidly with increasing intermolecular distance

and therefore forces between molecules at low density arc weak. However, as density
rises, molecules come into closer proximity with one another and, as a result, interact more

* The comparisons shown in Figs. 5-4 and 5-5 are for the case where Egs. (5-9) and (5-10) are truncated after the
quadratic terms. When similar comparisons are made with these equations truncated after the linear terms, it often
happens that, because of compensating errors, Eq. (5-10) provides a better approximation at higher densities than

Eq. (5-9). See Chueh and Prausnitz (1967).
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Figure 5-4 Compressibility factor for argon at -70°C.
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‘f:z?l;c.:n]tqlge. Tgcsii):rlpo?e o;" the virial coefficients 1s to take these interactions into ac-

o devﬁltiyonsafrmgr%lc]ance of the second virial c.:oefficient is that it takes into

cules. Simiemons f ot;]n xd eal lbehavxorvtl?at result fr.om interactions between two mole-

behauion o r();;u]t p ir v1r.1al cocffment takes into account deviations from ideal

of cach higher oo Tom the m[eracuonA of three molecules. The physical significance
al coefficient follows in an analogous manner,
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From statistical mechanics we can derive relations between virial coefficients and
intermolecular potential functions (Hill, 1986). For simplicity, consider a gas com-
posed of simple, spherically symmetric molecules such as methane or argon. The po-
tential energy between two such molecules is designated by I'(r), where r is the dis-
tance between molecular centers. The second and third virial coefficients are given as

functions of ['(r) and temperature by

00
B=21N, JO [1-e¢ 4 2ar (5177
and
—81:2N% 0 (0 £y H3
C=———J J I fizfisfasnanaredriadnadrys (5-18)
3 0 70 Jny-nyf

where f,-j Eexp(—F,vj/kT)—l, k is Boltzmann’s constant and N4 is Avogadro’s con-
stant.’

Similar expressions can be written for the fourth and higher virial coefficients.
While Eqs. (5-17) and (5-18) refer to simple, spherically symmetric molecules, we do
not imply that the virial equation is applicable only to such molecules; rather, it is
valid for essentially all stable, uncharged (electrically neutral) molecules, polar or
nonpolar, including those with complex molecular structure. However, in a complex
molecule the intermolecular potential depends not only on the distance between mo-
lecular centers but also on the spatial geometry of the separate molecules and on their
relative orientation. In such cases, it is possible to relate the virial coefficients to the
intermolecular potential, but the mathematical expressions corresponding to Egs. (5-
17) and (5-18) are necessarily more complicated.

Special care must be taken with “reactive” molecules, for example, molecules
like acetic acid that dimerize, as discussed in Sec. 5.9.

’ Similarly, the McMillan-Mayer solution theory provides the link between the osmotic second virial coefficient
( By, ) of a solute (see Sec. 4.11) dilute in a solvent mediom and the potential of mean force, w,,:
. ® - n L TWET
B3, (T.p,) = 27N, [ li-e Wy B TVRT ) 2,
is the chemical potential of the solvent. Osmotic third virial coefficients can also be calculated from the

where p;
B depends only on temperature, in a dilute solution B3, depends on tem-

potential of mean force. While in a gas
rature and chemical potential of the solvent.
Eqguation (5-18) assumes, for convenience, that the potential energy o
of the three binary potential energies (additivity assumption): Tipy(ryy, 713 723) = Tialryg) + [5(ryy) + Tpslrs)-
This assumption is unfortunately not strictly correct, although in many cases, it provides a good approximation.

f molecules 1, 2, and 3 is given by the sum
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5.3 Extension to Mixtures

P;rhaps th.e_ most important advantage of the virial equation of state for application to
phase ethb.rlum problem§ lies in its direct extension to mixtures. This extension re-
Z:Qrgcisvzg g;b:ra;zea::}lmpllonsf: The comgosition dep?ndences of all virial coefficients
vt oqmaon %or pur;z;:soer;.o the statistical-mechanical derivation used to derive the
bctwc};rstt‘;v (c):(;:(s)xl:z: 1the Isecond virial coefficier!t thgt takes into account interactions
between tw es. In a pure gas, the chemical identity of each of the interacting
ules is alwgys the same; in a mixture, however, there are various types of tw
mf)]ecule mte'ra.cuons dt':pending on the number of components present. In a bina:’):
(rjnclsxitgu::t:gr:f?lr{u}g s;:iecfl?s i and j, there are _three types of two-molecule interactions,
Costanate coe,fjf;jc,i::t t}tl-]. dFor each of thesg interactions there is a corresponding sec-
Cules ungecoc ticiont ¢ at ’lt:,pcnds on the mtermole.cular potential between the mole-
les under cons? ration. hus‘ pii is thcf, §econd virial coefficient of pure i that de-
p n Ty By is the second virial coefficient of pure j that depends on T';;; and B, is
the seconq virial coefficient corresponding to the i-j interaction as determju;cd b, ’I“
the potential energy between molecules i and j. If i and j are spherically symxzetr;:j,
molecules, By, is given by the same expression as that in Eq. (5-17): )

o0
B = 2N J' [l_e-l',-j(r)/kT] 2
y A o redar (5_19)

The three second viri ici i
perature; they are indepc;?iltzrcl?e;ff'l(;f:stistf i(i’of j;])’r:sns?nzx) 2;‘3df“£ﬁ":’ i el o'f ety
they are independent of composition. B "virial o6 mc')s't lmPor[am’
comed with fooneen A p . Because the second virial coefficient is con-
oo wth fnterac ions :twee.n two @olccules, it can be rigorously shown that the
and e panal oo ictent of a mixture is a quadratic function of the mole fractions y,
i ary mixture of components i and j, x

)
Buixt = ¥/ Bii +2,3,By +y1B;; (5-20)

For a mixture of m com i
_ ponents, the second virial coeffici is gi i
goncralization of B, (o cient is given by a rigorous

m m
Brixe =3 2. v:¥,By
i=1j=1 A (5-21)
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5.5 Calculation of Virial Coefficients from Potential Functions

In previous sections we discussed the nature of the virial equation of state and, in Eq.
(5-28), we indicated the way it may be used to calculate the fugacity of a component in
a gaseous mixture. We must now consider how to calculate the virial coefficients that
appear in Eq. (5-28) and, to do so, we make use of our discussion of intermolecular
forces in Chap. 4.

First, we must recognize that the first term on the right-hand side of Eq. (5-28) is
frequently much more important than the second term; at low or moderate densities,
the second term is sufficiently small to allow us to neglect it. This is fortunate because
we can estimate B’s with much more accuracy than we can estimate C’s.

Equation (5-19) gives the relation between the second virial coefficient B,-j and
the intermolecular potential function [;;(r) for spherically symmetrical molecules § and
J» where i and j may, or may not, be chemically identical. If the potential function Iy(n
is known, then B; can be calculated by integration as indicated by Eq. (5-19) and
similarly, if the necessary potentials are known, Cijx can be found from Eq. (5-24).
Such integrations have been performed for many types of potential functions corre-
sponding to different molecular models. A few models are illustrated in Figs. 5-8 and
5-9. We now give a brief discussion of cach of them with reference to second virial
coefficients, followed by a short section on third virial coefficients.

Ideal-Gas Potential. The simplest (trivial) case is to assume that I = 0 for all
values of the intermolecular distance r. In that case, the second, third, and higher virial
coefficients are zero for all temperatures and the virial equation reduces to the ideal-
gas law,

Hard-Sphere Potential. This model takes into account the nonzero size of the
molecules but neglects attractive forces. It considers molecules to be like billiard balls;
for hard-sphere molecules there are no forces between the molecules when their centers
are separated by a distance larger than o, the hard-sphere diameter, but the force of
repulsion becomes infinitely large when they touch, at a separation equal to . The
potential function I'(r) is given by

0 for r>c
r= (5-34)
o for r<o

Substituting into Egs. (5-19), we obtain for a pure component

B= %mv,,& (5-35)
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Figure 5-8 Potential functions with Zero, one, or two adjustable parameters.

For mixtures, the second virial coefficient B,-j (i#f) is

3
G;+0;
B, = %nNA(—iz—jJ (5-36)

The hard-sphere model gives a highly oversimplified picture of real molecules
because, for a given gas, it predicts second virial coefficients that are independent of
temperature. These results are in strong disagreement with experiment but give a rough
approximation for the behavior of simple molecules at temperatures far above the criti-
cal. For example, helium or hydrogen have very small forces of attraction; near room
temperature, where the kinetic energies of these molecules are much larger than their
potential energies, the size of the molecules is the most significant factor that contrib-
utes to deviation from ideal-gas behavior. Therefore, at high-reduced temperatures, the
hard-sphere model provides a reasonable but rough approximation. Because Eq. (5-34)
requires only one characteristic constant, the hard-sphere model is a one-parameter
model.
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Figure 5-9 Potential functions with three adjustable parameters.

Sutherland Potential. According to London’s theory of dispersion forces, the
potential energy of attraction varies inversely as the sixth power of the distance of
scparation. When this result is combined with the hard-sphere model, the potential
function becomes

e for r<o

r={ g (5-37)

— for r>0o
76

where X is a constant depending on the nature of the molecule. London’s equation [Eq.
(4-19)] suggests that X is proportional to the jonization potential and to the square of
the polarizability. The Sutherland model provides a large improvement over the hard-
sphere model and it is reasonably successful in fitting experimental second-virial-
coefficient data with its two adjustable parameters. Like the hard-sphere model, how-
ever, it predicts that at high temperatures the second virial coefficient approaches a
constant value, although the best available data show that it goes through a weak
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maximum at a temperature very much higher than the critical. This limitation is not
serious in typical phase-equilibrium problems where such high-reduced temperatures
are almost never encountered except, perhaps, for helium.

Lennard-Jones’ Form of Mie’s Potential. As discussed in Chap. 4, Lennard-

Jones’ form of Mie’s equation is

12 6
r=de (E] -[-‘i) (5-38)
r r

where € is the depth of the energy well (minimum po'tential cncrgy) and © is the ;Ztl)llx-
sion diameter, i.e., the separation where I" = 0. Equation (5-38) gives what is Em d):
the best known two-parameter potential for small, nonpo}al" molecu'les: I'n ;?nne[l;m
Jones’ formula, the repulsive wall is not vertical but has a finite slope,'thls imp 1est :
if two molecules have very high kinetic energy, they may be at?le to 1.nterl;1>.ene:’ra zno
separations smaller than the collision diameter . Potential .funcnons with td.xstp t(})1;;t a);
are called soft-sphere potentials. The Lenna{d-]ones poter’mal correctlyhpre ic sd Vi;ial
a temperature very much larger than e/k (k is Boltzmann’s constant)., t e] lsedctzlr: el
coefficient goes through a maximum. The temperature where B = 0 is called the Boy
tempe\r?glt:;:le.Lennard-]ones’ potential is substituted into the §tati§tical m.echz_mxcalt
equation for the second virial coefficient [Eq. (5-17)], the .requn'ed mtegl";\tloln9 512 )n;)s
simple. However, numerical results have been (_)btamed (Huschfelc?ef et q ., 34 as
shown in Fig. 5-10, where the reduced (dimensxonles§) virial coefficient is 2 'uln "
of the reduced (dimensionless) temperature. The.reducmg parameter for the \;:naf cotche
ficient is proportional to collision diameter & raised to the third power and that for

temperature is proportional to characteristic energy .
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Figure 5-10 Second virial coefficients calculated from Lennard-Jones 6-12 potential.
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For many gases, second virial coefficients, as well as other thermodynamic and
transport properties, have been interpreted and correlated successfully with the Len-
nard-Jones potential. Unfortunately, however, it has frequently been observed that for
a given gas, one set of parameters (¢ and o) is obtained from data reduction of one
property (e.g., the second virial coefficient) while another set is obtained from data
reduction of a different property (e.g., viscosity). If the Lennard-Jones potential were
the frue potential, then the parameters & and o should be the same for all properties of
a given substance.

But even if attention is restricted to the second virial coefficient alone, there is
good evidence that the Lennard-Jones potential is only an approximation, albeit a very
good one in certain cases. It has been shown by Michels et al. (1958) that his highly
accurate data for the second virial coefficient of argon over the temperature range -140
to +150°C cannot be fitted with the Lennard-Jones potential within the experimental
error using only one set of parameters. This conclusion can be supported through a
revealing series of calculations suggested by Michels et al. (1960). We take an experi-
mental value of B corresponding to a certain temperature and then arbitrarily assume a
value for €. We now calculate the corresponding value of by = (2/3)N,4o3 that is re-
quired to force agreement between the experimental B and that calculated from the
Lennard-Jones function. Next, we repeat the calculation at the same temperature as-
suming some other value of €. In this way we obtain a curve on a plot of by versus e.
We now perform the same series of calculations for another experimental value of B at
a different temperature and again obtain a curve; where the two curves intersect should
be the “true” value of ¢ and by. However, we find that when we repeat these calcula-
tions for several different temperatures, all the curves do not intersect at one point, as
they should if the Lennard-Jones potential were exactly correct.

Such a plot is shown in Fig. 5-11; instead of a point of intersection, the curves
define an area that gives a region rather than a unique set of potential parameters.
Therefore, we conclude that even for a spherically symmetric, nonpolar molecule such
as argon, the Lennard-Jones potential is not completely satisfactory (Guggenheim and
McGlashan, 1960; Munn, 1964; Munn et al., 1965, 1965a). Such a conclusion, how-
ever, was reached only because Michels’ data are of unusually high accuracy and were
measured over a large temperature range. For many practical calculations the Lennard-

Jones potential is adequate. Lennard-Jones parameters for some fluids are given in Ta-
ble 5-1.

The Square-Well Potential. The Lennard-Jones potential is not a simple
mathematical function. To simplify calculations, a crude potcntial was proposed having
the general shape of the Lennard-Jones function. This crude potential is obviously an
unrealistic simplification because it has discontinuities, but its mathematical simplicity
and flexibility make it useful for practical calculations. The flexibility arises from the
square-well potential’s three adjustable parameters: the collision diameter, o the well
depth (minimum potential energy), €; and the reduced well width, R. The square-well
potential function is
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! ted from second-virial-coefficient

igure 5-11 Lennard-Jones' parameters calcpla e i
::3: for argon. If perfect representation were given by Lennard-Jones' potential, all
isotherms would intersect at one point.

Table 5-1 Parameters for the Lennard-Jones potential obtained from second-virial

coefficient data.$

= (A) ek (K)
Ar 3.499 118.13
Kr 3.846 162.74
Xe 4.100 222.32
CH, 4.010 142.87
N, 3.694 96.26
CH, 4.433 202.52
CH, 5.220 194.14
C,Hy 5.711 233.28
C(CHy), 7.420 233.66
n-C,H,, 7.152 223.74
CeHg 8.443 247.50
co, 4.416 192.25
nCH,, 8.540 217.69

YL, S.Tee, S. Gotoh, and W. E. Stewart, 1966, Ind. Eng. Chem. Fundam., 5: 356.
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o for r<e
I'=¢-¢ for oc<r<Ro (5-39)

0 for r>Ro

leading to

R3 -1 £
= bR 1—
B=byR [1 2 exp kTJ

The square-well model has an infinitely steep repulsive wall and therefore, like
the Sutherland model, it does not predict a maximum for the second virial coefficient.
With its three adjustable parameters, good agreement can often be obtained between
calculated and experimental second virial coefficients (Sherwood and Prausnitz, 1964).

The Exp-6 Potential. A potential function for nonpolar molecules should con-
tain an attractive term of the London type in addition to a repulsive term; little is
known about that term but it must depend strongly on the intermolecular distance. For
the repulsive term Mie, and later Lennard-Jones, used a term inversely proportional to
r, the intermolecular distance, raised to a large power. Theoretical calculations, how-
ever, have suggested that the repulsive potential is not an inverse-power function but
rather an exponential function of r. A potential function that uses an exponential form
for repulsion and an inverse sixth power for attraction is called an exp-6 potential. (It
is also sometimes referred to as a modified Buckingham potential.) This potential func-
tion contains three adjustable parameters and is written’

6
€ 6 r Fing
r=-—=% js - _ [ Tmin :
1-G6/7) vexp[y[l rmmn ( r J -40)

Wwhere - is the minimum potential energy at intermolecular separation r ;. The third
parameter, y, determines the steepness of the repulsive wall; in the limit, when Y = o0,
the exp-6 potential becomes the Sutherland potential that has a hard-sphere repulsive
term.

The collision diameter o (i.e., the intermolecular distance where I' = 0) is only
slightly less than the distance T'min but the exact relation depends on the value of Y, as
shown in Table $-2. Numerical results for the second virial coefficient, based on Eq.
(5-40), are available (Sherwood and Prausnitz, 1964a). Good agreement can often be
obtained between calculated and observed second virial coefficients.

’ Equation (5-40) is valid only for r > 5, where s (a very small distance) is that value for r where I goes through a
(false) maximum. For completeness, therefore, it should be added that I = w for r < 5. The quantity s, however, is
not an independent parameter and has no physical significance.
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Table 5-2 Ratio o/r;, for the exp-6 potential as a function of the repulsive steepness
parameter y.

Y -1/

15 0.894170
18 0.906096
20 0.912249
24 0.921911
30 0.932341
40 0.943914
100 0.970041
300 0.986692
© 1.000000

The Kihara Potential. According to Lennard-Jones’ potential, two molecules
can interpenetrate completely provided that they have enough energy; according to this
model, molecules consist of point centers surrounded by “soft” (i.e., penetrable) elec-
tron clouds. An alternative picture of molecules is to think of them as possessing im-
penetrable (hard) cores surrounded by penetrable (soft) electron clouds. This picture
leads to a model proposed by Kihara. In crude mechanical terms, Kihara’s model (for
spherically symmetric molecules) considers a molecule to be a hard billiard ball with a
foam-rubber coat; a Lennard-Jones molecule, by contrast, is a soft ball made exclu-
sively of foam rubber.

Kihara (1953, 1958, 1963) writes a potential function identical to that of Len-
nard-Jones except that the intermolecular distance is taken not as that between mo-
lecular centers but rather as the distance between the surfaces of the molecules’ cores.’
For molecules with spherical cores, the Kihara potential is

© for r<2a

= _ 12 _a.\0 (5-41)
4g i Za) -2 20) for r>2a
r-2a r-2a

where g is the radius of the spherical molecular core, € is the depth of the energy well,
and o is the collision diameter, i.e., the distance r between molecular centers when
r=0.

Equation (5-41) is for the special case of a spherical core, but a more general
form has been presented by Kihara for cores having other convex shapes such as rods,

* When the cores are not spherical, the intermolecular distance is for the orientation that gives a minirmum dis-
tance of separation.
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tctrahedra, tri.angles, prisms, etc. (Connolly and Kandakic, 1960; Prausnitz and Keeler,
196.1; Prausnitz and Myers, 1963). Numerical results, based on Kihara’s potential are:
available for second virial coefficients for several core geometries and, in artic;xlar
for reduc.ed (spherical) core sizes a*, where a* = 2a/(c — 2a). When ’a* =P0 the re:
sults are identical to those obtained from Lennard-Jones’ potential. Because, it is a
three-parameter function, Kihara’s potential is successful in fitting thermodynamic
data for' a large number of nonpolar fluids, including some complex substances whose
properties are represented poorly by the two-parameter Lennard-Jones potential. Figure
5-12 shows reduced second virial coefficients calculated from Kihara's potentiai.
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Figure 5-12  Second virial cosfficients calculated f i ! ial wi
S oy ouond vir rom Kihara's potential with a

In our discussion of Lennard-Jones’ potential we indicated that Michels’ highl
accurate second-virial-coefficient data for argon could not be represented over a lar Z
temperature range by the Lennard-Jones potential using only one set of potcntial i-
rameters, However, these same data can be represented within the very small expeﬁ'i-
mental'error by the Kihara potential using only one set of parameters (Myers and
Prau§mtz, 1962; Rossi and Danon, 1966; O’Connell and Prausnitz, 1968). The abilit
f’f Kihara’s potential to do what Lennard-Jones’ potential cannot do is hardly surpris)-,
ing because the former potential has three adjustable parameters whereas the latter has
or_lly two. In fitting data for argon, the three Kihara parameters were determined b
trial ?m.d error until the deviation between experimental and theoretical second viria);
coefflc.lents reached a minimum less than the experimental error. The magnitude of the
core c.hameter obtained by this procedure is physically reasonable when compared to
the dlamete.r of the “impenetrable core” of argon as calculated from its electronic
structure. Figure 5-13 shows results of a theoretical calculation of the electron density
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as a function of distance. While the results shown appear t.o justif‘y conf,nden.ce in 1t'}:je
Kihara potential, the agreement indicated must not.be considered pr'oof‘_foff its tv? id-
ity. The “true” potential between two argon atoms is unc-ioubledly quite fh eren rﬂolxr:
that given by Eq. (5-41) especially at very small seParatlons._However, nhappears a
for practical calculation of common thermodynamic properties (excgptft ose at very
high temperatures), Kihara’s potential is one of the most useful potential functions now
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above. It is evident from Fig. 5-14 that even for such a “simple” substance as krypton,
the Kihara potential is significantly superior to the Lennard-Jones potential. Kihara
parameters for some fluids are given in Table 5-3.

Table 5-3 Parameters for the Kihara potential (spherical core) obtained from second-
virial-coefficient data.$

available.

ELECTRON DENSITY—

Figure 5-13 Charge distribution in argon (quoted by C. A. Coulson, 1962, Valencs,
2" Ed. London: Oxford University Press).

One practical application of Kihara’s potential is for prediction of secgnf:l virial
coefficients at low temperatures where experimental data are scarce.a.nd d1ff1<.:u.lt to
obtain. To illustrate, Fig. 5-14 shows predicted and observed second virial c.oefflclenss
for krypton at low temperatures; two sets of predictions were made, onc with the Kli
hara potential and the other with the Lennard-Jones potential. In both cases potentia
parameters were obtained from experimental measurements made at room temperature and

T T T T T
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E ~200[— a*=0.15 o FENDER 8 HALSEY (1962)
o
. POTENTIAL PARAMETERS OBTAINED
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’

Figure 5-14 Second virial coefficients for krypton. Predictions at low temperatures
based on Lennard-Jones potential (a* = 0) and on Kihara potential.

a* o (A) ek (K)
Ar 0.121 3317 146.52
Kr 0.144 3.533 213.73
Xe 0.173 3.880 298.15
CH, 0.283 3.565 2113
N, 0.250 3.526 139.2f
0, 0.308 3.109 19434
C,H, 0.359 3.504 496.69
C;H,g 0.470 4.611 501.89
CF, 0.500 4319 289.7+
C(CH,), 0.551 5.762 557.75
n-C,H,, 0.661 4717 70115
CH 0.750 5335 832.0t
co, 0.615 3.760 424.16
n-C;H,, 0.818 5.029 837.82

$L. S. Tee, S. Gotoh, and W_ E, Stewart, 1966, Ind. Eng. Chem. Fundam., 5: 363.
* A.E. Sherwood and J. M. Prausnitz, 1964, J. Chem. Phys., 41: 429.
$C. E. Hunt, unpublished results,

For mixtures, Kihara’s potential gives B,-j (i#/) when the pure-component core pa-
rameters and the unlike-pair potential parameters ¢;; and o;; are specified. The latter
two are frequently rclated to the pure-component parameters by empirical combining
rules. However, the core parameter for the i-j interaction can be derived exactly from
the core parameters for the i-i and J+j interactions even for nonspherical cores (Kihara,
1953, 1958, 1963; Myers and Prausnitz, 1962).

The difficulty of determining “true” intermolecular potentials from second virial-
coefficient data is illustrated in Figs. 5-15 and 5-16 that show several potential func-
tions for argon and for neopentane. Each of these functions gives a good prediction of
the second virial coefficient; the three-parameter potentials give somewhat better pre-
dictions than the two-parameter potentials, but all of them are in fairly good agreement
with experiment. However, the various potential functions differ very much from one
another, especially for neopentane.
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Figures 5-15 and 5-16 give striking evidence that agregment between a particular
set of experimental results and those calculated from a partlculér model should not be
regarded as proof that the model is correct.” Models are useful in molecular therm.ody-
namics but one must not confuse utility with truth. Figures 5-15 and 5-.16 p.ro'V1de a
powerful illustration of A. N. Whitehead’s advice to scientists: “Seek simplicity but

distrust it”.
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Figure 5-15 Potential functions for argon as determined from second-virial-coefficient

data.

The Stockmayer Potential. All of the potential functions previously described
are applicable only to nonpolar molecules. We now briefly consider molecules tl?at
have a permanent dipole moment; for such molecules Stockmayer proposed a potential
that adds to the Lennard-Jones formula for nonpolar forces an additional term for. the
potential energy due to dipole-dipole interactions. Dipole-induced dipole interactlc?ns
are not considered explicitly although it may be argued that because these forces, like
London forces, are proportional to the inversc sixth power of the intermolecular sepa-
ration, they are, in effect, included in the attractive term of the Lennard-Jones formula.
For polar molecules, the potential encrgy is a function not only of intermolecular sepa-
ration but also of relative orientation. Stockmayer's potential is

* A more nearly “true” potential can be obtained by simultaneous analysis of cxperimen}a! data for a vm'?ty of
properties: second virial coefficients, gas-phase viscosity, diffusivity, and thermal diffusivity. Such analysis has
produced a *best” potential function for argon. See Dymond and Alder (1969) and Barker and Pompe (1968).
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Figure 5-16 Potential functions for neopentane as determined from second-virial-
coefficient data.

. 12 . 6 2
I=4¢ (—) —[—) +%—Fe(91,92,63) (5-42)
r

r

where Fy is a known function of the angles 6, 8,, and 05 that determine the relative
orientation of the two dipoles [see Eq. (4-7)]. This potential function contains only two
adjustable parameters because the dipole moment M is an independently determined
physical constant.

The collision diameter o in Eq. (5-42) is the intermolecular distance where the
potential energy due to forces other than dipole-dipole forces becomes equal to zero.

Numerical results, based on Stockmayer’s potential, are available for the second
virial coefficient (Rowlinson, 1949). Figure 5-17 shows reduced second virial coeffi-
cients calculated from Stockmayer's potential as a function of reduced temperature and
reduced dipole moment. The top curve (zero dipole moment) is for nonpolar Lennard-
Jones molecules and it is evident that the effect of polarity is to lower (algebraically)
the second virial coefficient due to increased forces of attraction, especially at low
temperatures, as suggested by Keesom’s formula (see Sec. 4.2). Stockmayer’s potential
has been used successfully to fit experimental second-virial-coefficient data for a vari-
ety of polar molecules; Table 5-4 gives parameters for some polar fluids and Table 5-5
shows some illustrative results for trifluoromethane.
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| |
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Figure 5-17 Second virial coefficients calculated from Stockmayer's potential
for polar molecules. '

Table 54 Parameters for Sockmayer's potential for polar fluids-*

u (debye) o (A) e/k (K)
Acetonitrile 3.94 4.38 219
Nitromethane 3.54 4.16 290
Acetaldehyde 2.70 3.68 270
Acetone 2.88 3.67 479
Ethanol 1.70 2.45 620
Chloroform 1.05 2.98 1060
n-Butanol 1.66 2.47 1125
n-Butyl amine 0.85 1.58 1020
Methyl formate 1.77 2.90 684
n-Propyl formate 1.92 3.06 877
Methyl acetate 1.67 2.83 895
Ethyl acetate 1.76 2.99 956
Ethyl ether 1.16 3.10 935
Dicthy! amine 1.01 2.99 1180

* R. F. Blanks and J. M. Prausnitz, 1962, AIChE 1., 8: 86.

The various potential models discussed above may be used to calculate B,-j as
well as B;;. The calculations for Bij are exactly the same as those for B;; when potential
rij * 3 -1
dipole moment p* in Fig. (5-17) becomes p* = p,-p.j(sijc,-jﬁ) .

is used rather than potential T';;. In the Stockmayer potential, when i # j, the reduced
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Table 5-5 Second virial coefficients of trifluoromethane. Calculated values from Stock-
mayer potential with e/k = 188 K, o = 4.83 A, and . = 1.65 debye.

Temperature -B (em® mol™)

(°C) Experimental* Calculated
0 233 215
25 187 185
50 154 150
75 127 127
100 107 108
150 76 76
200 53 53

* J. L. Belzile, S. Kaliaguine, and R. S. Ramalho, 1976, Can.
J. Chem. Eng., 54: 446,

5.6 Third Virial Coefficients

In the preceding section, attention was directed to the second virial coefficient. We
now consider briefly our limited knowledge concerning third virial coefficients.

Equations (5-18) and (5-24) give expressions for the third virial coefficient in
terms of three two-body intermolecular potentials. In the derivation of these equations,
an important simplifying assumption was made; i.e., we assumed pairwise additivity of
potentials. The third virial coefficient takes into account deviations from ideal-gas be-
havior due to three-molecule interactions; for a collision of three molecules i, j, and k,
we need I';; the potential energy of the three-molecule assembly. However, in  the
derivation of Egs. (5-18) and (5-24) it was assumed that

Ty =Ty +Ty +Ty (5-43)

Equation (5-43) says that the potential energy of the three molecules i, j, and & is equal
to the sum of the potential energies of the three pairs i-j, i-k, and J-k. This assumption
of pairwise additivity of intermolecular potentials is a common one in molecular
physics because little is known about three-, four- (or higher) body forces. For an m-
body assembly, the additivity assumption takes the form

Ti23..m= 2 Ty (5-44)
all possible
if pairs

We also used this assumption in Sec. 4.5, where we briefly considered some properties
of the condensed state. While there is no rigorous proof, it may well be that because of
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cancellation effects, the assumption of pairwise additivity becomes better as the num-
ber of particles increases. However, it is likely that the assumption is somewhat in er-
ror for a three-body assembly (Rowlinson, 1965). Therefore, calculations for the third
virial coefficient using Eq. (5-18) must be considered as approximations.

For any realistic potential, the calculation of third virial coefficients is compli-
cated and, to obtain numerical results, we require a computer. Numerical computations
have been carried out for several potential functions and results for pure nonpolar
components are available (Sherwood and Prausnitz, 1964a; Kihara, 1953, 1958, 1963;
Graben and Present, 1962; Shcrwood et al., 1966). For example, Fig. 5-18 gives re-
duced third virial coefficients as calculated from Kihara’s potential. In these calcula-
tions, a spherical core was used and pairwise additivity was assumed. The reduced
third virial coefficient, reduced temperature, and reduced core are defined by

c* C « kT N 2a

- = a =

2 c—2
Gy T

where -£ is the minimum énergy in the potential function, o is the intermolecular dis-
tance when the potential is zero, and a is the core radius. For a* = 0, the results shown
are those obtained from Lennard-Jones’ potential.

Some efforts have been made to include nonadditivity corrections in the calcula-
tion of third virial coefficients (Sherwood and Prausnitz, 1964a; Kihara, 1953, 1958,
1963). These corrections are based on a quantum-mechanical relation derived by Axil-
rod and Teller (1943) for the potential of three spherical, nonpolar molecules at sepa-
rations where London dispersion forces dominate. The nonadditive correction is a
function of the polarizability and at lower temperatures it is large; its overall effect is that
it approximately doubles the calculated third virial coefficient at its maximum, steepens
the slope near the peak value and shifts the maximum to a lower reduced temperature.

Calculated and observed third virial coefficients for argon are shown in Fig. 5-
19. Calculated results are based on four potential functions; for each of these, the pa-
rameters were determined from second-virial-coefficient data. The solid lines include
the nonadditivity correction but the dashed lines do not; it is clear that the nonadditiv-
ity correction is apprcciable.

Barker and Henderson (1976) have presented a definitive study of the third virial
coefficient of argon; their results are shown in Fig. 5-20. The lowest line shows calcu-
lations based on the assumption of pairwise additivity as given by Eq. (5-43). For the
two-body potential for argon, Barker and Henderson used an expression obtained from
data reduction using two-body experimental information: second virial coefficients and
gas-phase transport properties at low densities. The middle line shows calculations
based on a three-body potential (I';;) that includes first-order corrections to the addi-
tivity assumption. (This correction is called the Axilrod-Teller correction.) The top line
shows calculations that include second- and third-order corrections. These calculations
agree with experiment within expcrimental error.
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Figure 5-19 Calculated and observed third virial coefficients for argon. Solid lines

include Axilrod-Teller nonadditivity corrections. Dashed lines show a portion of calcu-

l(?tgsdagesults assuming additivity. Circles represent experimental data of Michels
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Figure 5-20 Third virial coefficients for argon (Barker and Henderson, 1976).

Without going into details, we can indicate the nature of the three-body correc-
tions. First, we recall that in London’s theory of dispersion forces, the potential is ap-
proximated by a series; for a two-body potential it has the form

rey=-S6_% _Cuo (5-45)

where r is the center-to-center distance between two molecules. The leading coefficient is

2
Ce = 3_ ol (5-46)
4 (4me,)?

where o is the polarizability, 7 is the ionization potential, and g, is the vacuum permit-
tivity. Coefficients Cg and C, (not reproduced here) give the higher-order terms in
London’s potential. (In many practical calculations these terms are ignored.) '
For a three-body potential, the first-order correction to the additivity assumption
is obtained from London’s theory, restricting attention to the leading (C6/r6) term. This

first-order (Axilrod-Teller) correction to I” ijk is

3
9 la”(1+3cos0; cos cosBy )
AT (st ) = — (5-47)
G jho i 16 (47180)2('})’,'/(’1'1()3

where 6;, 6]-, and 6, are the three angles of a triangle whose sides are Tijs Tk and r;.
Second-order corrections for nonadditivity are based on London’s theory, re-

stricting attention to the first two terms in the series; third-order corrections for nonad-
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ditivity are based on London’s theory, restricting attention to the first three terms in
the series. Still higher corrections appear to be negligible.

The important difference between Barker and Henderson’s results (Fig. 5-20) and
those of earlier workers (Fig. 5-19) lies in the two-body potential. The earlier work is
bascd on a two-body potential that follows only from second virial-coefficient data
and, as suggested by Fig. 5-15, these data alone do not yield a unique potential func-
tion. However, Barker and Henderson were able to use a unique two-body potential
obtained from other dilute-gas data in addition to second-virial-coefficient data. The
excellent agreement between theory and experiment, shown in Fig. 5-20, follows from
an excellent two-body potential.

Due to experimental difficulties, there are few reliable values of third virial coef-
ficients. It is therefore not possible to make a truly meaningful comparison between
calculated and observed third virial coefficients; not only are experimental data not
plentiful, but frequently they are of low accuracy. Even when calculated from very
good P-V-T data, the accuracy of third virial coefficients is about one order of magni-
tude lower than that for second virial coefficients. To the extent that a comparison
could be made, Sherwood (1964) found that the Lennard-Jones potential (with nonad-
ditivity correction) generally predicted third virial coefficients that were too high, es-
pecially for larger molecules (such as pentane or benzene) where the predictions were
very poor. The three-parameter potentials (square-well, exp-6, and Kihara) gave much
better predictions; however, in view of the uncertainties in the data, and because cor-
rections for nonadditive repulsive forces have been neglected, it is not possible to give
a quantitative estimate of agreement between theory and experiment.

Little work has been done on the third virial coefficient of mixtures. The cross-
coefficients, assuming additivity, can be calculated by Eq. (5-24) and the nonadditivity
correction to these cross-coefficients, based on the formula of Axilrod and Teller, can
also be computed as shown by Kihara (1953, 1958, 1963). However, the results of such
calculations cannot be presented in a general manner; the coefficient Cijk (for i#jk) is
a function of five independent variables for a two-parameter potential; for a three-
parameter potential, eight independent variables must be specified.

An approximate method for calculating Cijk was proposed by Orentlicher (1967),
who showed that, subject to several simplifying assumptions, a reasonablc estimate of
Cijx can be made based on Sherwood’s numerical results for the third virial coefficient
of]pure gases.”” Component i is chosen as a reference component; let C;T) stand for
the third virial coefficient of pure { at the temperature T of interest. Let the potential
function between molecules i and j be characterized by the collision diameter o;; and
the energy parameter € Similarly, the potential function for the i-k pair is character-
.ized by o, and €, and that for the J-k pair by 0 and Ejj- Orentlicher’s approximation
is

0 Orentlicher's approximation has been critically discussed by D. E. Stogryn, 1968, J. Chem, Phys., 48: 4474,
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*

2 * *.11/3
Ci(T) [G"j"j"cikj [C5 (T Cie T )Cix (T )]

L] L]
Ci(M) o} Cy(T;)

(5-48)

where T,f = kT /gy, etc., and where the individual red}lced coefficients C};, etc., are
obtained from available tables for pure components using any one of several pppular
potential functions.' Orentlicher’s formula appears to give good results for- mixtures
where the components do not differ much in molecular size arlld.characterlstlc enelr%y.
The accuracy of the approximation is difficult to assess, ‘byt it is probably useful for
mixtures at those temperatures where the third virial coefficient of each compc?nent.h.as
already passed its maximum. Table 5-6 gives some observefi anq calculated .thlrd-vmal
cross coefficients for binary mixtures. Because the uncertainty in the experimental re-
sults is probably at least £100 (cm3 mol-1)2, agreement between calculated and ex-
imental results is good for these particular mixtures. )
perlm’eI‘hird virial coifficiems for polar gases were calculated by walmson (1951)
using the Stockmayer potential and assuming additivity. Be§ause experxmc?ntal data are
scarce and of low accuracy, it is difficult to make a meaningful comparison between

calculated and experimental results.

Table 5-6 Experimental and calculated third-virial cross coefficients for some binary
mixtures (Orentlicher, 1967).

Component C,, (cm3 mol™")?

1 2 Temperature  Experimental Calculated
(K)

Ar N, 273 1349 1510
203 1706 1770
163 2295 2420

N, Ar 273 1399 1340
203 1780 1750
163 2397 2330

CF, CH, 273 4900 5250
373 3400 3360
473 2600 2700
573 2400 2400

N, C,H, 323 2300 2300

"' ¢ is a function of kT/e,; and, perhaps, of some additional parameter such as aj; for the Kihara potential. This
; .
func't]ion, however, is the same as that for Cj; , that in tum depends on kTle, and, perhaps, on aj;.
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5.7 Virial Coefficients from Corresponding-States Correlations

Because there is a direct relation between virial coefficients and intermolecular poten-
tial, it follows from the molecular theory of corresponding states (Sec. 4.12) that virial
coefficients can be correlated by data reduction with characteristic parameters such as
critical constants. A few correlations are given in the following paragraphs.

The major part of this section is concerned with second virial coefficients for
nonpolar gases. We cannot say much about third virial coefficients because of the scar-
city of good experimental data and because of the nonadditivity problem mentioned in
the preceding section. Further, our understanding of polar gases is not nearly as good
as that of nonpolar gases, because again, good experimental data are not plentiful for
polar gases, and because theoretical models, based on ideal dipoles, often provide poor
approximations to the behavior of real polar molecules.

Equation (5-17) relates second virial coefficient B to intermolecular potential I
Following the procedure given in Sec. 4.12, we assume that the potential I can be
written in dimensionless form by

L F(i) (5-49)

€ g

where € is a characteristic energy parameter, o is a characteristic size parameter, and F
is a universal function of the reduced intermolecular separation. Upon substitution, Eq.
(5-17) can then be rewritten in dimensionless form:

0 2
B _ _ -eF(r/a) r r :
2N a3 —J‘o [] CXP( kT H (o) d(c) ©-50)

If we set 63 proportional to critical volume v, and &/k proportional to critical
temperature T, we obtain an equation of the form

B _ pB(lJ (5-51)

Ue Ty

where Fp is a universal function of reduced temperature,

Equation (5-51) says that the reduced second virial coefficient is a generalized
function of reduced temperature; this function can either be determined by specifying
the universal potential function I'/e and integrating, as shown by Eq. (5-50), or by a
direct correlation of experimental data for second virial coefficients.
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At high densities, we must compute fugacity coefficients from mostly empirical
equations of state or from generalized correlations such as those based on the theorem
of corresponding states (Sec. 5.11). Research on the statistical mechanics of dense
gases is progressing rapidly and we may expect practical results in the not-too-distant
future; however, at present mostly empirical methods are more useful for most appli-
cations.

When applying an equation of state or a corresponding-states correlation to a
gaseous mixture, flexibility in mixing rules is essential for good results. A mixing rule
that is good for one system may not be good for another; mixing and combining rules
should therefore contain one or two adjustable parameters determined, if possible, by a
few data for the mixture under consideration. If no mixture data are available, they
should be estimated by careful analysis of chemically similar systems where mixture
data are at hand. Good estimates of fugacity coefficients can be made for constituents
of dense gas mixtures that contain nonpolar (or slightly polar) components. However,
for mixtures containing polar gases, or for any mixture near critical conditions, calcu-
lated fugacity coefficients are not likely to be highly accurate. Fugacity coefficients
calculated from an equation of state are usually more sensitive to binary coefficients in
mixing and combining rules than to any other detail in the equation of state, especially
for those components that are dilute in the mixture.

In phase equilibria, the effect of gas-phase nonideality is particularly strong in
those cases where a condensed component is sparingly soluble in a compressed gas.
This solubility is strongly affected by the density and by the intermolecular forces be-
tween solute and gaseous solvent. In many cases, at high pressures, solubilities calcu-
lated with the assumption of ideal-gas behavior are in error by several orders of mag-

nitude (Sec. 5.12).

We close this chapter by briefly repeating what we stressed at the beginning:
Calculation of fugacities in gaseous mixtures is not a thermodynamic problem. The
relations that express fugacity in terms of fundamental macroscopic properties are ex-
act and well known; they easily lend themselves to numerical solution by computers.
The difficulty we face lies in our inability to characterize and to predict with sufficient
accuracy the configurational (essentially, volumetric) properties of pure fluids and
even more, of mixed fluids; this inability, in wrn, is a consequence of insufficient
knowledge concerning intermolecular forces. To increase our knowledge, we require
on the one hand new results from theoretical molecular physics and on the other, more
accurate experimental data for equilibrium properties of dense mixtures, especially for
those containing one or more polar components.
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Problems

1. Consider the following simple experiment: We have a container of fixed volume V; this
container, kept at temperature T, has in it n; moles of gas 1. We now add isothermally to
this container n, moles of gas 2 and we observe that the pressure rise is AP. Assume that
the conditions are such that the volumetric properties of the gases and their mixture are
adequately described by the virial equation neglecting the third and higher coefficients.
The second virial coefficients of the pure gases are known. Find an expression that will
permit calculation of By,.

2, At -100°C, a gaseous mixture of one mole contains 1 mol % CO, and 99 mol % H,. The
mixture is compressed isothermally to 60 bar. Does any CO, precipitate? If so, approxi-
mately how much? [At -100°C, the saturation (vapor) pressure of pure solid C02 is
0.1392 bar and the molar volume of solid CO2 is 27.6 cm3 mol-l]

3. A gaseous mixture containing 30 mol % CO, and 70 mol % CHy is passed through a
Joule-Thomson expansion valve. The gas mixture enters the valve at 70 bar and 40°C and
leaves at 1 bar. Does any CO, condense? Assume that the heat capacitics are independent
of temperature. The data are as follows (1 = CH, 2= CO,:



