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We now make use of the method of Lagrange multipliers. (See Appendix l f(?ra descnpnog Ny, _ %3/" ; ; —/A - 51" _’A | .
of this technique.) We multiply the constraint equations by Lagrange multipliers A, 1>, an _Nb prn Z;:o gje Z,-=o PP

A3 respectively: The distributions above are generally written in the forms
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We then add these equations and subtract Eq. (2.15) to get @ s 4 ’
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L. I rd =0 imposed constraints. They are generalized Boltzmann distributions in terms of the as yet
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undefined constant A5. The parameters Z, and Zj, are termed partition functions. Inasinglk-
component system only one partition function would be defined, usually just designated =
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which reduces to
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At the maximum, this relation must hold for arbitrary choices of dN, ; and dN,, ;, which
implies that the coefficients of the differential terms must all be zero:
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Solving these relations for N, ; and Nj ;, we obtain
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Using the constraint relations (2.1) and (2.2) together with Eq. (2.20) yields
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Combining Egs. (2.20) and (2.21), we find that
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