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CHAPTER 1

STATISTICAL-MECHANICAL ENSEMBLES AND
THERMODYNAMICS

1-1 Introduction. The object of thermodynamics is to derive mathe-
matical relations which connect different experimental properties of
macroscopic systems in equilibrium—systems containing many molecules,
of the order of, say, 102° or more. However useful, these interconnections
of thermodynamics give us no information at all concerning the interpreta-
tion or explanation, on a molecular level, of the observed experimental
properties. Iror example, from thermodynamics we know that experi-
mental values of the two heat capacities C,, and Cy for a given system must
be interrelated by an exact and well-known equation, but thermodynamics
is unable to furnish any explanation of why particular experimental values
of either C,, or Cy, taken separately, should be observed. Such an explana-
tion falls rather within the province of statistical mechanics or statistical
thermodynamics, terms which we regard in this book as synonymous.
That is, the object of statistical mechanics ts to provide the molecular theory
or interpretation of equilibrium properties of macroscopic systems. Thus the
fields covered by statistical mechanics and thermodynamics coincide.
Whenever the question “why?” is raised in thermodynamics—why, for
example, a given equilibrium constant, Henry’s law constant, equation of
state, etc., is observed—we are presented with a problem in statistical
mechanics.

Although thermodynamics itself does not provide a molecular picture
of nature, this is not always a disadvantage. Thus there are many com-
plicated systems for which a molecular theory is not yet possible; but
regardless of complications on the molecular level, thermodynamics can
still be applied to such systems with confidence and exactness,

In recent years both thermodynamics and statistical mechanics have
been extended somewhat into the nonequilibrium domain. However, the
subject is new and changing, and the foundations are still a little shaky;
hence we omit this area from our consideration. An exception is the
theory of absolute reaction rates, which we discuss in Chapter 11. This
approximate theory is based on a quasi-equilibrium approach which makes
it possible to include the theory within the framework of equilibrium
statistical mechanics.

Aside from the postulates of statistical mechanics themselves, to be
introduced in the next section, the foundation on which our subject is
based is quantum mechanics. If we seek a molecular interpretation of the
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2 STATISTICAL-MECHANICAL ENSEMBLES [cHap. 1

properties of a system containing many molecules, as a star'ting point we
must certainly be provided with knowledge of the properties of tlr}e in-
dividual molecules making up the system and of the natgre of th.e mtfar-
actions between these molccules. This is inform:_mtlo{n Wthh‘ can in prin-
ciple be furnished by quantum mechanics but which in r{rzu.ctxce is usually
obtained from experiments based on the behavior of 1nd1v1.d}1al molecgles
(e.g., spectroscopy), pairs of molecules (e.g., the second virial coefficient
of an imperfect gas), ete. N o -

Although quantum mechanies is prerequisite to s.ta.tlstlcal mecbamcs,
fortunately a reasonably satisfactory version of sjcatlstlcal mechanics can
be presented without using any quantum-mechanical concepts other than
those of quantum-mechanical states, energy levels, and 111term01ecula:r
forces. Only in Part IV of the book is it necessary to go beyond this
stage. ' o

Another very helpful simplification is that the classical limit of quantt}m
mechanics can be used, without appreciable error, in most proble.:ms in-
volving significant intermolecular interactions. Problems of this type
are very difficult without this simplification ‘(P.art 1v). o )

Despite our extensive use of classical statlstlcafl rr.lechamcs 1n.th'e appli-
cations of Parts IT and III, we introduce the principles of s‘tatlstlcal me-
chanics, beginning in the next section, in quantum-mec.:hamcal language
because the argument is not only more general but is actually much

simpler this way.

1-2 Ensembles and postulates. As mentioned above, our problem is to
calculate macroscopic properties from molecular properties. Qur gene.ral
approach is to set up postulates which allow us tq proceed c'hrectly with
this task insofar as “mechanical” thermodynamic propert.les are con-
cerned; the “nonmechanical” properties are then handle(.i indirectly by fan
appeal to thermodynamics. By “mechanical” properties we mean,h‘ O}I;
example, pressure, energy, volume, number of molecules, etc.‘, all of.w ic
can be defined in purely mechanical terms (quantum or classical) \Vlt‘lllout,
for example, introducing the concept of temperature. Examples of “non-
mechanical” thermodynamic variables are temperature, entropy, free
energy (Gibbs or Ilelmholtz), chemical potential, e’gc. ' '

Let us consider the pressure as a typical mechanical Varlable.' In prin-
ciple, if we wished to calculate the pressure mn a thermodynamic system
from molecular considerations, we would have tQ calculate (by quantum
or possibly classical mechanics) the force per ur%lt area exerted on a :lvalll
of the system, taking into account the change in t.he statfz of the whole
system with time. The force itself would be a function of tlme.' What. we
would neced, therefore, is a time average of the force over a period of t1¥110
sufficiently long to smooth out fluctuations, i.e., sufficiently long to give
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a time average which is independent, say, of the starting time, ¢ = ¢;, in
the averaging. Because of the tremendous number of molecules in a typical
system, and the fact that they interact with each other, such a hypothetical
calculation is of course completely out of the question in either quantum
or classical mechanics.

Therefore we are forced to turn to an alternative procedure, the en-
semble method of Gibbs, based on postulates connecting the desired time
average of a mechanical variable with the ensemble average (defined

. below) of the same variable. The validity of these postulates rests on the

agreement between experiment and deductions (such as those in this
book) made from the postulates. So far, there is no experimental evidence
available that casts doubt on the correctness of the postulates of statistical
mechanics.

Before stating the postulates, we must introduce the concept of an
ensemble of systems. An ensemble is simply a (mental) collection of a very
large number 97 of systems, each constructed to be a replica on a thermo-
dynamic (macroscopic) level of the actual thermodynamic system whose
properties we are investigating. For example, suppose the system of in-
terest has a volume V, contains N molecules of a single component, and is
immersed in a large heat bath at temperature T. The assigned values of
N, V, and T are sufficient to determine the thermodynamic state of the
system. In this case, the ensemble would consist, of 9% systems, all of which
are constructed to duplicate the thermodynamic state (N, V,T) and
environment (closed system immersed in a heat bath) of the original
system. Although all systems in the ensemble are identical from a thermo-
dynamic point of view, they are not all identical on the molecular level.
In fact, in general, there is an extremely large number of quantum (or
classical) states consistent with a given thermodynamic state. This is to
be expected, of course, since three numbers, say the values of N , Vand T,
are quite inadequate to specify the detailed molecular (or “microscopic”)
state of a system containing something in the order of 102° molecules.

Incidentally, when the term “quantum state” is used here, it will be
understood that we refer specifically to energy states (i.e., energy eigen-
states, or stationary states).

At any instant of time, in an ensemble constructed by replication of a
given thermodynamic system in a given environment, many different
quantum states are represented in the various systems of the ensemble.
In the example mentioned above, the calculated instantaneous pressure
would in general be different in these different quantum states. The
“ensemble average” of the pressure is then the average over these instan-
taneous values of the pressure, giving the same weight to each system in the
ensemble in calculating the average. A similar ensemble average can be
calculated for any mechanical variable which may have different values
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(i.e., which is not held constant) in the different systems of the ensemble.

We now state our first postulate: the (long) time average of a mechanical
variable M in the thermodynamic system of inlerest is equal to the ensemble
average of M, in the limit as 9 — oo, provided thal the systems of the ensemble
replicate the thermodynamic state and environment of the actual system of
interest. That is, this postulate tells us that we may replace a time average
on the one actual system by an instantaneous average over a large number
of systems “representative” of the actual system. The first postulate by
itself is not really helpful; we need in addition, in order to actually compute
an ensemble average, some information about the relative probability of
oceurrence of different quantum states in the systems of the ensemble.
This information must be provided in a second postulate.

Note that the ensemble average of M in the limit as 9 — oo, referred
to above, must be independent of time. Otherwise the original system
which the ensemble “represents” is not in equilibrium.

We shall work out details in this chapter for the three most important
thermodynamic environments: (a) an isolated system (N, V, and F given,
where I = energy); (b) a closed, isothermal system (N, V, and T given);
and (¢) an open, isothermal system (u, V, and T given, where p = chemical
potential). N and u stand for the sets Ny, N, ... and uq, Mo, . . . if the
system contains more than one component. Also, V might stand for a
set of “external variables”* if there are more than one. The representative
ensembles in the above three cases are usually called microcanonical,
canonical, and grand canonical, respectively. The first postulate is applica-
ble to all these cases and to other ensembles which will be introduced in
Section 1-7. The second postulate, however, can be limited to a state-
ment concerning only the microcanonical ensemble. The corresponding
statement for other ensembles can then be deduced (as in Seetion 1-3, for
example) from this limited second postulate without any further as-
sumptions.

Our second postulate is: in an ensemble (N — o) representative of an
isolated thermodynamic system, the systems of the ensemble are distributed
uniformly, that is, with equal probability or frequency, over the possible
quantum stales consistent with the specified values of N, V, and L. In other
words, each quantum state is represented by the same number of systems
in the ensemble; or, if a system is selected at random from the ensemble,
the probability that it will be found in a particular quantum state is the
same for all the possible quantum states. A related implication of this
postulate, when combined with the first postulate, is that the single
isolated system of actual interest (which serves as the prototype for the

* There is one “external variable” for each thermodynamic work term, e.g.,
volume, arca, length, etc.
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systems of the ensemble) spends equal amonunts of time, over a long period
of time, in each of the available quantum states. This last statement is
often referred to as the quantum “ergodic hypothesis,” while the second
postulate by itself is usually called the “principle of equal a priori prob-
abilities.” The ergodic hypothesis in classical statistical mechanics is
mentioned at the end of Section 6-3. For a more detailed discussion, sce
Tolman, pp. 63-70 and 356-361. (¥or full identification of works referred
to by only the author’s last name, see Prcface.)

The value of E in the second postulate must be one of the energy levels
of the quantum-mechanical system defined by N and V. Since N is
extremely large, the energy levels for such a system will be so close together
as to be practically continuous, and furthermore, each of these levels will
have an extremely high degeneracy. We shall in general denote the
number of quantum states (i.e., the degeneracy) associated with the
energy level E for a quantum-mechanical system with N and V by
Q(N, V, E). Thus the number of “possible quantum states” referred to
in the second postulate is Q.

A complication in the above discussion is the fact that, from an opera-
tional point of view, I cannot be known precisely; there will always be a
small uncertainty 6 in the value of E. For all thermodynamic purposes
this complication is completely inconsequential.* Hence for the sake of
simplicity we ignore it.

It should also be mentioned that the point of view in the above state-
ment of the second postulate is not so general as it might be. If the energy
level E for the system N, V has a degeneracy @, there are Q orthogonal
(and therefore linearly independent) wave functions ¢ which satisfy the
Schrodinger equation 3¢y = Ey. The particular choice of the Q ¥'s is
somewhat arbitrary, since other possible choices can always be set up by
forming suitable linear combinations of the ¢’s in the first choice. In any
case, the “Q quantum states” mentioned in connection with the second
postulate refers to some set of orthogonal ¢’s all “belonging” to the same
E. But regardless of the set of ¥’s chosen, the wave function representing
the actual quantum-mechanical state of any system selected from the
ensemble will in general not be one of the chosen set. of ¥’s, but will be some
linear combination of all of them. The contrary is really implied in the
above statement of the second postulate. Fortunately, this simplification
in our statement of the postulate makes no differencet in any deductions
we shall make that can be compared with experiment. In fact, this com-
plication can be bypassed, at the expense of slightly more complicated

*See S. M. (the present author’s earlier work identified in the Preface),
p. 113, and Mayer and Mayer, pp. 55-56, 100-102.
T See 8. M., pp. 50-55, 79.
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equations in the next section, by using energy levels (rather than states)
in the postulate, as in Eq. (1-38) (Problem 1-1).

We turn now to a derivation from the above two postulates of the essen-
tial properties of the canonical and grand ensembles.

1-3 Canonical ensemble. The experimental system of interest here
has a fixed volume V, fixed numbers of molecules N (which stands for
Ni, N, ... in a multicomponent system), and is immersed in a very
large heat bath at temperature 7. The heat bath is assumed “very large”
to be consistent with the use of the limit 9 — oo below. Our first objective
is to set up the machinery necessary for calculating the average value of
mechanical variables, such as energy and pressure, in the system. In view
of the first postulate, this means that we need to be able to caleulate the
ensemble average of such variables. This, in turn, can be done if we know
the value of the particular variable in question in a given quantum state
and the fraction of systems in the ensemble which are in this quantum state.
It might be noted that because the thermodynamic system here is not
isolated but is in contact with a heat bath, the energy of the system can
fluctuate; thereforc quantum states belonging to different energy levels E
will have to be reckoned with. Since mechanical variables have well-
defined values in a given quantum state (in fact we can use this property
as the definition of a “mechanical variable”), the task that remains is to
determine the fraction of systems in the ensemble in a given quantum state
(or the probability that a system selected arbitrarily from the ensemble is
in a given quantum state). This is the problem we now consider.

The experimental, or prototype, system is in a very large heat bath at
temperature T. Therefore each system in the ensemble representative of
the experimental system must also be in a very large heat bath at T.
Specifically, we contemplate the following arrangement, which satisfies
this requirement. We imagine 91 macroscopic systems as our ensemble,
each with N and V (duplicating the values in the experimental system),
stacked together in a lattice (Fig. 1-1). The walls between the different
systems in the ensemble are heat conducting, but impermeable to all
molecules. To establish the temperature T, we imagine further that the
entire stack of systems (i.e., the ensemble) is placed in a sufficiently large
heat bath at T. After equilibrium is reached, thermal insulation (repre-
sented schematically by the double lines in Fig. 1-1) is placed on the out-
side walls of the ensemble, and the ensemble is removed from the heat
bath. The entire ensemble itself is now an isolated system with volume
9V, numbers of molecules 3N, and a total energy which we shall denote
by E. (t = total). The relation between E; and the temperature 7' will
emerge later. Observe that each system in the ensemble is immersed in a
large (we shall later use the limit 9 — oo) heat bath at temperature T
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Fig. 1-1. Canonical ensemble of 3 systems, each with N and V.

as is reguired if the ensemble is to be representative of the original thermo-
dynamic system. That is, the remaining 3 — 1 systems in the ensemble
serve as the heat bath for any one selected system.

At this point we come to the essential step in the argument, which is to
note that since the ensemble itself is an isolated system, we can apply the
second postulate to the whole ensemble. Thus the entire canonical ensemble
shown in Fig. 1-1 is now regarded as a prototype thermodynamic system
characterized by the variables UV, %N, and E,, We shall refer to thié
syster.n as a “supersystem” in order to avoid confusion with the original
experimental closed, isothermal system. The second postulate tells us
then, that every possible quantum state of this supersystem (canonicaly
ensemble) is equally probable and hence should be given equal weight in
the calculation of average values of interest. As we show next, it is possible
to take advantage of this observation in order to find the required prob-
ability of occurrence of a given quantum state in the systems of a canonical
ensemble.

We return now to a single system in the canonical ensemble. As a quan-
tumrmechanical system, it is characterized by N and V. Let us list all
p‘osmble energy states for such a system in increasing order of the energy
e.1genvalue, By, By, ..., Ej . ... Here, for later convenience, each state is
11§ted separately so that when degeneracy occurs several successive E;'s
w11¥ have the same value. For example, in the notation used above and J’co
yvhlch we shall return later, the energy value E occurs @ successive times
in the list.

Each E; is a function of N and V. If V is changed infinitely slowly
each E; changes in a continuous manner. However, the number of molei
cules of any one of the components can be changed only discontinuously—
one molecule at a time. Hence the energy levels must jump discontinu-
ously if N changes.
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For most systems containing many molecules, it is not possible, for
purely mathematical reasons, to actually calculate the energies Ey, s,
... from Schrodinger’s equation. But for generality, we assume in the
present argument that these energies are known. In applications, we shall
be able to make progress in each case only to the extent that we can over-
come this difficulty either by approximation, or by use of classical me-
chanics, or by reducing this many-body problem to a one-, two-, three-,
... body problem, etc. In any case, the ensemble method has the follow-
ing advantage over a direct time-average calculation on a single system
(sce Section 1-2): we need only the stationary states of the system and do
not have to follow the change in state of the system with time.

The list of energy eigenvalues E;, Es, ... is assumed, then, to be the
correct list for any given problem. The argument that follows is valid
irrespective of such complications as intermolecular forces, symmetry
restrictions on wave functions, etc.

Since each system in the canonical ensemble has the same N and V,
all systems have the same set of energy states, represented by E\E,,...,
E;, .... Now suppose we observe, simultaneously, the energy state of
each system in the ensemble, and count the number of systems found in
each of the listed states. We let n; be the number of systems found in
state K1, . .., njin state E;, etc. The set of numbers ny, ng, . . . is called a
“distribution.” “There are, of course, many possible distributions that
might be observed, but obviously all must satisfy the relations

Z n; = N, (1_1)
Z n;E; = E. (1-2)

The individual systems in the supersystem (canonical ensemble) are
macroscopic in size, are arranged in a certain order, and can be separately
labeled. Then the energy state of the whole supersystem would be com-
pletely specified if we indicated the system energy state (i.e., Ey, Es, .. .)
for cach of the (labeled) systems in the supersystem. To take a simple
example, suppose there are four systems (A, B, C, D) in the supersystem
(9 = 4) and the possible energy states for each system are Ey, E,, and
E3. Then one possible energy state for the supersystem would be, say,

A B C D

provided that (compare Eq. 1-2)
E, - 21, + E3 = E, (preassigned).
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Here ny = 1, ng = 2, ng = 1. Actually, there are 12 possible states of
the supersystem consistent with this distribution. Three of them are:

A B C D

But there are four sets of this type, corresponding to the four possible as-
signments of £;. In general, the number of states of the supersystem,

Q,(n), consistent with a given distribution n, ng, ... (n represents the
entire set ny, ng, . . .) is given by the well-known combinatorial formula
(ny +ng +---)! au!
Q(n) = S . -
t(n) nilngl - - NEx (1-3)

Recall that we are attempting to find the probability of observing a
given quantum state (say E,) in a system selected from a canonical en-
semble (or the fraction of systems in the ensemble in the state E;). For a
particular distribution =i, ms, ..., this probability or fraction is just
n;/M for state E;. But, in general, there are very many possible distribu-
tions for given N, V, 91, and E;. What we need is the over-all probability;
that is, an average of n;/9 over these distributions, based on an assign-
ment of equal weight to each state of the supersystem. Assignment of
equal weights to supersystem states implies immediately that the weight
assigned to each distribution, in calculating an average over different dis-
tributions, should be proportional to Q,(n) for the distribution.

Now consider the numerical example above, and suppose further that
there are just two distributions which satisfy the conditions of Eqs. (1-1)
and (1-2), namely,

n1=1,n2=2,n3=], Q¢:12,
n1=2,n2:0,n3:2, Q¢:6.

The probability of observing E3 is 1 in the first distribution and % in the
second distribution, while the over-all probability is %:
_1X1242xX6 4 Wy 1

FTTT12+6 —3 w3
In general, the required probability of observing a given quantum state
E; in an arbitrary system of a canonical ensemble is
7 1 » Q(n)nj(n
P] — . Z l( ) J( ) , (1_4)

%5 >n Qu(n)
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where n;(n) means the value of n; in the distribution n. The sum is over
all distributions satisfying Eqs. (1-1) and (1-2). Of course, by definition,
2iPi=1

Then the desired ensemble averages of, for example, the energy and
pressure are

T = Y PE; (1-5)
i

and

=l
l

> Pipi, (1-6)
J

where p; is the pressure in state /55, defined by

oF;
n=— (), a7

That is, —p, dV = dE; is the work that has to be done on the system,
when in the state /7, in order to increase the volume by dV.

In principle, Eq. (1-4) for P; tells us all we need to know to calculate
canonical ensemble averages of mechanical variables. But in practice, a
much more explicit expression for P; is necessary. We must now face this
problem.

The most elegant way to proceed is to employ the Darwin-Fowler
technique,* based on the mathematical method of steepest descents.
However, in the present discussion, since we can take 3 — oo, the so-
called maximum-term method, which involves the use of undetermined
multipliers, is equally rigorous though not so elegant. The latter method,
which we shall use, has the important advantage of requiring much less
of the reader in the way of mathematical background.

In any particular case we are given 9, the k; (determined by N and V),
and E, (determined by 9, N, V, and T). There are then many possible
distributions n consistent with the restrictions-of Egs. (1-1) and (1-2).
Tor each of these distributions we can calculate from Eq. (1-3) the weight
,(n) to be used in obtaining averages, as already explained. The situation
here parallels exactly that illustrated in Appendix II. That is, because of
the large numbers involved (the present example is ideal in this respect
because we can take the limit 91 — o), the most probable distribution,
and distributions which differ only negligibly from the most probable
distribution, completely dominate the computation of the average in
Eq. (1-4). By the most probable distribution, denoted by n*, we mean of
course that distribution to which the largest Q,(n) belongs. In effect this
means that, in the limit as 9 — o, we can regard all other weights Q(n)

* See, for example, Schridinger, Chapter 6.
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n

n—n

Fie. 1-2. Number of states Q; as a function of the distribution n (schematic).

as negligible compared with @,(n*). This is illustrated diagrammatically
in Fig. 1-2. With 3 large but finite, there would be a narrow gaussian dis-
tribution centered about n = n*. But in the limit as 9 — o, this dis-
tribution becomes completely sharp (a Dirac é-function).

Naturally, as we let 91 — oo (i.e., increase the size of the ensemble),
holding N, V, and T fixed, each n; — o also. But all ensemble averages
depend only on the ratio n;/9, which remains finite.

Equation (1-4) becomes, then,

@y 1 Q(n®nf o}

Pi=g =% amm — =’ -8
where n} is the value of n; in the most probable distribution, n*. Equation
(1-8) tells us that in the computation of P; we can replace the mean value
of nj by the value of n; in the most probable (largest Q;) distribution.
This leads us to a purely mathematical question: Which of all possible sets
of n;’s satisfying Eqgs. (1-1) and (1-2) gives us the largest ©,?

We solve this problem by the method of undetermined multipliers
(see Appendix III). The distribution giving the largest Q, is also the dis-
tribution giving the largest In @,, since In z increases monotonically with x.
We work with In @, instead of £, because it is more convenient. IFrom

Eq. (1-3),
In Q,(n) = (Z ni> In (Z n,-) — Z n;lnn,,

1 1

where we have used Stirling’s approximation (Appendix II) and changed
the running index from j to 7. This “approximation” is in fact exact here
because we are interested in the limit 3, n; — . According to the method
of undetermined multipliers, the set of n;'s which leads to the maximum
value of In £,(n), subject to the conditions (1-1) and (1-2), is found from
the equations

d - .
%—j[lnﬂt(n)—azi:n,-——ﬁzniEi]:(), i=12, ...,
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where o and 8 are the undetermined multipliers. On carrying out the dif-
ferentiation, we find

ln(Zn,) It —a—BE; =0, j=12...,
or
nf = e P Fi, i=12,.... (1-9)

This is the most probable distribution, expressed in terms of a and B.
If desired, 9 may be substituted for Y m; in In ,(n) at the outset, and
treated as a constant in the differentiation. This will change the meaning
of a, but not any physical results.

The straightforward procedure here is to substitute the distribution
(1-9) into Eqs. (1-1) and (1-2) in order to determine « and 8 as functions
of 9t and E,, or of 9t and E (since obviously Iy = NE). The result is

o — _BE; -
€ EJ: e (1-10)
o Z]‘ Eje—ﬁEi

¥

where 91 has dropped out of both equations. Equation (1-11) provides 8
as an implicit function of E (and also of N and V, since the energies F;
are functions of N and V). Equation (1-10) then gives o in terms of B
(and N, V). However, the independent variables of real interest here are
N, V, T rather than N, V, E, and we have no information yet about the
dependence of E on T. Hence we do not pursue the above approach any
further (see Problem 1-2, however), but turn instead, in Section 1-4, to
a thermodynamic argument which provides a direct connection between
gand T. .

We note in passing that elimination of e in Eq. (1-9) by use of
Eq. (1-10) (or comparison of Egs. 1-5 and 1-11) gives us P; as a function
of 3, Nyand V:

nt e—aE,-(N.V)
g Z'e—ﬂEi(N‘V)’

T

P; = j=1,2.... (1-12)

Anticipating the fact that 8 turns out to be a positive number, we deduce
from this equation that the probability of observing a given quantum

state in a canonical ensemble decreases exponentially with the energy of
the quantum state.

1-4 Canonical ensemble and thermodynamics. To bring nonmechanical
thermodynamic variables such as temperature and entropy into our dis-
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cussion, we now combine the above “mechanical” considerations with
thermodynamics. In the first place, by virtue of the first postulate, we can
associate the thermodynamic pressure p and energy E with the statistical-
mechanical ensemble averages 7 and E. Let us take the differential of E
in Eq. (1-5), holding N constant (the system being closed):

dE = ) E;dP; -+ ) P;dE;
J J

_ 1 EYof
= —=> (nP;+1 : (2L -
52 (nP; + 1InQ) dP; + Zj:P’<aV>NdV’ (1-13)

where we have defined

Q= > e, (1-14)

i

used Eq. (1-12) in the first sum, and have recognized in the second sum
that E;(N, V) can vary only with V if NV is fixed. The first sum simplifies
further in view of the relations

E. P;j=1, E dP; = 0,
J J
and

d (Z Piln PJ-) ~= 3 In P;dP;.
7 i

Thus, using Eq. (1-6), we can write

1 —
— 54 (Z P;ln Pj) = dE +pdV. (1-15)
7

Since we already have the associations with thermodynamics £ <> F and
p <> P, and since in thermodynamies (N constant)

TdS = dE + pdvV,

we can deduce from Eq. (1-15) the further association
Tds o — %d(Z P;ln P,~>. (1-16)
Jj

With these associations established, let us digress to note that from
Eq. (1-13) and
dE = DQ* — DW,
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we have
DQ* = TdS « > E;dP;, (1-17)
J
DW = pdV < »_ P;dE; (1-18)
J

where Q* and W are heat absorbed and work done by tbe system, respec-
tively. These relations provide us, in a general way, with the molecular
interpretation of the thermodynamic concepts of heat' and work: W‘e see
that when a closed thermodynamic system increases 1ts‘ energy 1nﬁn}tes1-
mally by the absorption of heat from its surroundings, this is accompl.lshgd
not by changing the energy levels of the system but rather by a shift in
the frlxction of time the system spends in the various energy states. The
converse statement can be made about the work term.

We now return to the main argument, the purpose of which is to relate
S to the ;. From Eq. (1-16),

1

where G is defined by

G = - ZlenPj.
i

From thermodynamics we know that the left side of Eq. (%—'19) lb an exact
differential. Hence the right side must be also. This condlleon will be met
provided that 1/87 is any function of G, say ¢(G). That is,

dS « (@) dG = df(G), (1-20)
where
d
(@ =/¢(G) a6,  «(G) = jEl(G—)
from Lq. (1-20),
From Eq. (1-20) S o (@) + ¢ (1-21)

where ¢ is an integration constant independent of G and therefore inde-

A + B = A B

;__ﬁ(___)

AB

Fie. 1-3. Systems A and B combined to form AB. All systems are at
samc temperature.
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pendent of the variables on which G depends (e.g., 8 and V, with V
constant). In thermodynamic language, ¢ is independent of the thermo-
dynamic state of a closed system. Experimental information about the
entropy always involves a difference in entropy between two states (e.g.,
the entropy change AS between 7'; and T, at constant N and V), never an
absolute value. The constant ¢ in Eq. (1-21) always cancels on taking
such a difference. Hence its value is completely arbitrary from an opera-
tional point of view. But for convenience and simplicity, we adopt the
particular choice ¢ = 0 from now on. The connection between this choice
and the third law of thermodynamics will be discussed in Section 2-4.

Up to this point we have that § < (@), but we do not know the func-
tion f. To settle this matter we make use of a thermodynamic property
of the entropy, namely its additivity. Specifically, suppose we have two
thermodynamic systems 4 and B at the same temperature and with en-
tropies S4 and Sp. Then if we regard the combined systems (Fig. 1-3) as
a new system AB, we have S45 = S4 + Sp. This relationship suffices
to determine f, as we now show.

1 B Rt I

B L B i

i B 4 B

B R B A
|t

F1c. 1-4. Canonical ensemble of I systems, each of type AB.

We first investigate whether the statistical-mechanical quantity G is
additive in the above sense. For this purpose we form a canonical ensemble
of N systems A B (as shown in Fig. 1-4) representative of a thermodynamic
(prototype) AB system at temperature 7. Heat can flow through all in-
terior walls of the ensemble. The A part of the thermodynamic system
is characterized further by N4 and V4, and the B part by N® and V2
(A and B are not exponents). In general, the types of molecules may be
different in 4 and B. We have two sets of energy states for the separate
systems, Ef, E4, ... and £F, Ef, ... If n? stands for the number of
A systems in the ensemble in state E;‘, with a similar meaning for nf",
then the number of states of the whole ensemble (IFig. 1-4), or super-
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system, consistent with given distributions n# and n® is

A B
(Zini)!  (Zini)t (1-22)

IIind! = IIinf!

since the A and B systems are independent of each other (except for
energy exchange through the walls). The distributions of interest must

satisfy the equations

an:fﬂ, Z?’LJB_—“SI,
Fi j

> (PEf + niET) = B
J

QL('ILA, nB) =

The argument from here on is essentially the same as before, so we
omit details (Problem 1-3). The three restrictions above require three
undetermined multipliers, a4, ap, and 8, respectively. We note in par-
ticular that because of energy exchange between the A and B systems,
only one cnergy equation and one multiplier 8 are necessary. For the
probability that the thermodynamic system AB has its A part in state
E# and its B part in state Ef, we find

B

—BE? _BE
4 e 7
Pu= " T (1-23)

where

QA:ZG_BEf; QB:ZC_ﬁEf.
)

This multiplicative property of P is of course what we should expect
from the form of Eq. (1-22). We deduce from Eq. (1-23) that if two sys-
tems are in thermal contact with each other (and therefore have the same
temperature), they have the same 8. This suggests a close connection
between 8 and 7', which we verify below.

IFor the combined system A B,

Gap = — Z Pijln Py
¥
— — > P{P} (n P! +InP7)
i.7
= — S Ptmpf — 3 P/ P;
i J

Gt s (1-24)
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That is, G is additive. Also, since S4p = S4 - Sp, we have

f(Gap) = f(Ga) + f(Gp).
Then, from Eq. (1-24),
f(Ga + Gr) = f(Ga) + f(GB).

The question before us becomes, then: Given that

fe +y) = f@) + (), (1-25)

what is the function f? Let us differentiate* Eq. (1-25) with respect to
z and y:

df(x +y) dx +y)  dfz+ 1y  df(x)

diz + y) dz  d@x+y) dx
dfz+y) oz +y) _dfa+y _ dl)
dz+y) oy = dlx+y dy

Hence

df@) _ df@y)

dx dy

This says that a certain function of x is equal to the same function of y.
But this is only possible if the function is a constant, say k. Then

af@) _

iz y f@) = kx +aq,

Wh(.are a 1s another constant. But we have to choose ¢ = 0 in order to
satisfy Eq. (1-25). Therefore, finally, we have found that f(z) = k=,
and that

S — f(@) = k@G
o —kY PjlnP; (1-26)
J
Also, from Eq. (1-20),
1 _4f(@) _
g7 —*@O =" = F
Qor
1 1

* This argument is from Schrédinger, p. 13.
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The constant k is still unevaluated at this stage. We have seen that if
any two systems are in thermal contact, they have the same 8 and T.
Therefore they have the same k. What is more, k is a universal constant,
since one system of the pair, say 4, can be retained and B can be varied
over all other possible systems, C, D, E, . ... The value of k can thus be
obtained once and for all by comparing statistical-mechanical and ex-
perimental values of the same property, on any convenient system (4,
above). The pressure of an ideal gas is usually used. The numerical value
of k depends, of course, on the absolute temperature scale employed. We
anticipate from our treatment of an ideal gas in Chapter 4 that k =
41.38044 X 10~ % erg - deg™!, with the conventional kelvin tempcra-
ture scale. However, the important fact that k is a positive number can
easily be checked here in several ways. For example, if we put 8 = 1/kT
in Eq. (1-11), differentiate with respect to T, and use the experimental
thermodynamic fact that Cy = (3E/3T)n v is always positive, we find
that % must be positive (Problem 1-4).

We are now in a position to summarize the basic statistical-mechanical
equations that can be used to calculate the thermodynamic properties of
a closed, isothermal system. In the first place, the probability that the
system is in any particular energy state E;is

o= Ei (N VKT
PyN,V,T) = oWV, T (1-28)

where '
QN, V,T) = D ¢ BtV IEL (1-29)

7
We call Q the “canonical ensemble partition function.” Because of the
association (1-27), the independent thermodynamic variables here turn
out to be N, V, and T, which is just the desired set for a closed, isothermal

system (see Section 1-3). The entropy is
S(N,V,T) = —k Yy Pjln P, (1-30)
7

where P; is given by Eq. (1-28). If we substitute Eq. (1-28) into
Eq. (1-30), we find ‘
E E A

T

S: +kan:T_-T,

where the last expression is a thermodynamic one (A is the Helmholtz
free energy). Therefore

AN, V, T) = —kTlnQWN, V, T). (1-31)

This equation is particularly useful because A is the “characteristic fune-
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tion” in thermodynamics for the independent variables N, V, T':

dA = —8dT — pdV + D padNa. (1-32)
Thus, )
p= (g_é>T,N - kT <a‘;III/Q>T,N’ (1_34)

Hence, if the function Q(N, V, T') is available from Eq. (1-29), differentia-
tion of @ yields S, p, and E. Furthermore, despite the fact that Eq. (1-31)
was derived from the study of a closed system, we can make use of the
thermodynamic equation (1-32) and Q(N, V, T') to deduce the chemical
potential of any component, say ¢, from

34 dIn Q)
= (2L — —kT ) _
K (aNi)T,V,Na#i ’ ( ONi )7, vV g, (1-36)

Thus we have a complete set of thermodynamic functions (from which
all others can be derived): N,V T, A, E, S, p, u. Incidentally, whether
the averaging bars over E and p in the above equations are dropped or
not is optional; it depends on whether one has in mind primarily the
thermodynamic or the statistical-mechanical aspect of the equation in
question.

The above equations, which allow us to deduce all the thermodynamic
properties from Eq. (1-29) for the partition function @, are general but
quite formal. In fact, the reader may feel that these relations are rather
useless since, in general, the E; must be expected to be very difficult to
calculate for a system with many molecules. While such an attitude is
perhaps justified in complicated cases, there are many systems for which
considerable progress of one kind or another can be made. Much of the
rest of this book will be devoted to such examples.

For many purposes it is convenient to group together all energy states
belonging to the same energy level. Let Q:(N, V) be the number of such
states (that is, the degeneracy) for an energy level E;(N, V). In other
words, in the list of energy states E,, Es, . . ., the same value E; occurs Q;
times. Then,

QW, V,T) = D e BN — X QuN, V)e BV (1-37)
3 i
(stutes) (levels)
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Also,
Qe BT

P (level) — QP (state) = —a (1-38)

is the probability that the system exists in the energy level E. We have
dropped subscripts here to avoid confusion between 7 and j. Whether a
sum such as one of those occurring in Eq. (1-37) is over “states” or “levels”
can always be judged by noticing whether or not degeneracies are included
as weights for the so-called Boltzmann factors (e~ EilkT),

We have already mentioned that P°;, being proportional to the Boltz-
mann factor ¢~ Zi/*T_ falls off exponentially with increasing E;. We shall
discuss essentially this point in more detail in Chapter 3, but in anticipa-
tion we should mention here two important extreme cases:

(2) If T — 0 and the lowest level E; is nondegenerate, then

— 5 — —F L .
Q —e El/kT[], _+_ 926 (Eq—E1)! T+ . ] Se E kT

and
P -1, P; — 0, j=2,3,....

That is, in the limit as 7' — 0, the system is certain to be found in the
lowest energy state. From Eq. (1-30), S — 0.

(b) If T — o, the relative effect of different E;'s on the Boltzmann
factors is washed out, and P; (state) — constant (independent of j); that
is, the probability distribution over states becomes uniform. Then S — w0,
assuming that there is an infinite number of energy states (Problem 1-5).

1-5 Grand canonical ensemble. In this section we suppose that the
thermodynamic system of volume V, whose propertics we wish to caleu-
late from molecular considerations, is in a large heat bath and is “open”
with respect to the molecules in the system. That is, both heat and matter
(molecules) can be transported across the walls of the system. The bath
provides a reservoir of heat at temperature T' and of molecules at chemical
potentials gy, go, . ... The system is thus characterized by the thermo-
dymamic variables V, T, py, g2, - - - . The numbers of molecules Ny, N,
. do not have fixed values, as they do in a closed system, but fluctuate
about mean values Ny, No, . . ..

We employ here the same type of argument as for the canonical en-
semble: (a) the first postulate permits us to use ensemble averages over
mechanical variables in place of time averages on the actual system;
(b) by regarding the entire ensemble as an isolated supersystem, we can
deduce ensemble-average weighting (probability) factors from the second
postulate, in terms of undetermined multipliers; and (c) the significance
of the undetermined multipliers, as nonmechanical variables, can then be
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Svstem
_ewith 7

..___‘——A+v———4-~——-_+-~___~4

Fic. 1-5. Grand canonical ensemble of 9T systems, each with V.

established by comparing statistical-mechanical and thermodynamic
expressions for mechanical variables.

Eor simplicity, we consider now a one-component system, with ¥, T, and
# given. As an ensemble (which we call a “grand canonical ensemble”)
representative of this system, we introduce a lattice (Fig. 1-5) of 9T sys-
tems, each with volume ¥V and with walls permeable to molecules (indi-
cated by the dashed lines) and to heat. To establish the desired values of
T and u in each of the 9 systems, we imagine that the whole ensemble is
immersed in a giant reservoir at 7 and p until equilibrium is reached. We
then place walls around the ensemble (solid double lines in Iig. 1-5)
that are impermeable to both heat and molecules, and finally remove the
ensemble from the reservoir. The ensemble itself is then an isolated super-
system to which the second postulate can be applied. The volume of the
supersystem is LV, and we let £, and N, be its total energy and number of
molecules.

Since the subsequent details are very similar to those in Sections 1-3
and 1-4, we condense the discussion here. For each value of N, there will
be a different set of energy states E;(N, V). The quantum-mechanical
state of the supersystem (ensemble) is specified when we give the value
o.f N and the state F;(N, V) for each system in the supersystem. In a
given state of the supersystem, let n;(N) be the number of systems which
contain N molecules and are in the particular energy state E;(N, V).
N can range from zero to infinity (unless there is some upper limit set by
the model being used). For a given distribution n, that is, for a set of
numbers

n1(0),
ni(1), n2(1), n3(1), . . .,
n1(2), n2(2), n3(2), . . .,
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the number of possible quantum states of the supersystem is

(2. (V)]
Qln) = /{1 1-39
) I~ ni(N)! (1-39)
Acceptable distributions must satisfy the conservation relations
> ni(N) = 9, (1-40)
7N
> n(NMEN, V) = Ey, (1-41)
N :
> ni(N)N = N.. (1-42)
i»N

If we let @, 8, and 7 be the respective undetermined multipliers, the most
probable distribution turns out to be (Problem 1-6)

n¥(N) = gre—eFEIN V=™V (1-43)

Again, in principle we can substitute Eq. (1-43) into Eqs. (1-40) through
(1-42) and find @, B, and 7 as functions of 9, E,, and N,. But, instead,
we follow a procedure analogous to that used for the canonical en-

semble.
From Egs. (1-40) and (1-43),

o= 3 PHE (1-44)
N

and
n—j(N) B @-(N) B PEN V) =N

Pi(N) = =5 o Zi'N,e—ﬂE;(N’.V)e—'yN” (1-45)

where P;(N) is the probability that a system selected at random from the
grand ensemble will contain N molecules and be in the energy state
Ej(N,V); or, P;(N) is the probability that the single prototype thermo-
dynamic system contains exactly N molecules and is in the energy state
E;(N, V). We note that P,(N) has an exponential dependence on both
E;(N,V) and N. An open system has a definite volume, but both the
energy and number of molecules in the system fluctuate. In a closed,
isothermal system (canonical ensemble), N is fixed but the energy fluctu-
ates. The magnitude of these fAuctuations will be examined in Chapter 2.
From the first postulate, we have the associations

B o E(= B/%) = 3 P;INEN, V), (1-46)
N
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N & N(= Ny/2) = ) Py(N)N, (1-47)
N
o ‘ dE,(N, V
PP =3P (- |, V) )Ll- (1-48)

These are mechanical variables, To include nonmechanical variables and
to evaluate 8 and v, we utilize the expression

dE = ZNj E;(N, V) dP;(N) + > Pi(N)dE;(N, V).  (1-49)
I N

Sincel we are summing over all values of j and N, E;(N, V) is in effect a
funct%on of ¥ only in the second term on the right. In the first term, we
substitute for E,(N, V) from Eq. (1-45). Then, ’

_ 1
dE = — EZ [YN + In P;(N) + In E] dP;(N)
N
dE;(N, V
+ 3 P BB Dy, (-0
N
where
B Z e—PE; (N V), N (1-51)
N

Using [Eq. (1-47)]
dN = Y N dP;(N),
N
Eq. (1-50) simplifies to
1 -
— Ed[ZN P;j(N)In P]‘(N)} =dK +7dV + %dlv. (1-52)
I

We compare this with the thermodynamic equation

TdS = dE + pdV — wdN, (1-53)
and conclude that
-1
" 5’ (1-54)
1
T dS < — 59 [Z Pi(N) In PJ-(N)] . (1-55)
N

By the same kind of lengthy argument already employed for the canoni-
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cal ensemble, we arrive at the further results

8 e —k Y Pi(N)In PyN), (1-56)
N
1
T B, (1-57)
and thercfore, from (1-54),
%ET_ s —7. (1-58)

The relation (1-56) has the same formal appearance as Eq. (1-30) in the
canonical ensemble. In fact, this form for S is quite general (see Problem
1-8, for example).

According to Eq. (1-45), there is only one 8 (and therefore k) for all
values of N. Trurthermore, this is the same 8 as in Section 1-4 for a closed,
isothermal system, since a grand ensemble is just an aggregate of canoni-
cal ensembles. That 1s, we can imagine “freczing” the composition of the
systems in a grand ensemble by suddenly inserting, between the systems,
walls which are heat conducting but impermeable to molecules. Then the
original grand canonical ensemble becomes simply a collection of canonical
ensembles (in fact, this is the significance of the word “grand”) in thermal
contact with each other, each characterized by a definite N.

Let us now summarize results for an open, isothermal system whose
thermodynamic state is specified by the variables V, T, and u. The prob-
ability that such a system contains N molecules and is in the energy state

E/N, V) is
()mE]-(N, V)/kTeIV ulkT

PJ(N)V) 77; .U') = = = (V T ,U.) ! (1—59)

where
VT, ) = Z e~ EiON V) IKT, NujkT (1-60)
N

We call £ the “grand partition function.” The notation used for P in
q. (1-59) means that N and j are essentially running indices (the notation
Py ; might have been used), while ¥V, T, and u are independent thermo-
dynamie variables. An alternative form for £ is

7

N

— ;Q(N, v, T)eV/*T. (1-61)
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The probability that the system has N molecules, irrespective of the
energy state, is
_QWV, v, T)e™ T

PGV, Ty = 20 Pi(N) = S0ros— (1-62)

Thus, for example, the average value of N is

NQ(N, V, T)eM /¥
E(V, T,

NV, T, ) = =¥ (1-63)

If we substitute Eq. (1-59) into Eq. (1-56), we find

_E_Nu g _ £ _ Ne pV

where the last expression is thermodynamic in origin. Hence
pV = kT'In 2 (V, T, u). (1-64)

Now pV is the thermodynamic characteristic function for the variables
V, T, and u:
d(pV) = SdT + Ndu + pdV. (1-65)

Therefore, from Eq. (1-64), we have the following relations which, to-
gether with Eq. (1-64), permit us to calculate all the thermodynamic
properties of a system if = is known as a function of V, T, and u:

dlnZE —
S = kT( 37 >V’“ + kInE, (1- 66)
dlnE
N = kT ) _
( du >V,T (1-67)
__.mfdInE _ InZ
p = kT (_—OV )M'T = kT i (1-68)

The last form of Eq. (1-68) follows from Eq. (1-64) or, on thermodynamic
grounds, from the fact that the variables held constant in the derivative
are both intensive.

We shall see in Chapter 2 that one can choose an ensemble from which
to calculate thermodynamic functions on the basis of convenience, and
irrespective of the actual environment of a system (heat bath, constant
pressure, etc.). In many problems the grand ensemble is easier to use than
the canonical ensemble. When this is the case, the reason is usually either
(a) that a mathematically awkward restraint of constant N in the canoni-
cal ensemble can be avoided by summing over N (Eq. 1-61), or (b) that
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a many-body problem can be reduced to a one-body, two—body,. e':tc.,
problem by viewing Eq. (1-61) as a power series in the “absolute activity”
A = e/*T:

2V, T =Q0,V,T) +Q(V, DA+ Q@ V, "IN+ . (1-69)

This is the preferable method in treating an imperfect gas, for example
(Chapter 15). _

The above discussion is limited to a one-component system, but it can
easily be extended to any number of components (Problem 1-7). For
example, for two components there will be two equations like (1-42) and
two undetermined multipliers, ¥ = —u1/kT and 72 = —uo/kT. Equa-

tion (1-59) becomes
e—E,—(Nth,V)/kT)\Jl\H)\IZVz

Pj(le N2; V; T; M1, .‘1'2) = E(V, T, “1, #2) ’ (1_70)
with
E= 5 QN Na V, AN, (1-71)
NL.N.
where
)\1 = eyllkT, )\2 = 6“2/k7‘.
Also
pV = kTln E (V, T, p1, no), (1-72)
d(pV) = SdT + Niduy + Nz dps + pdv, (1-73)

from which we can immediately write the extensions of Kgs. (1-66)
through (1-68).

1-6 Microcanonical ensemble. Here we are concerned with an isolated
system with given E, V, and N (N again represents a set N, N 9, ... if
the system is multicomponent). The representative ensemble is called a
microcanonical ensemble, as stated in Section 1-2. For an isolated system
it is difficult to achieve a direct connection between our two postulates
and thermodynamics (e.g., we have used variations in E for this purpose
in Sections 1-4 and 1-5, but here E is constant). The most common pro-
cedure for avoiding this difficulty is to introduce, essentially as a new
postulate, the equation S = kIn &, where Q(N, V, E) is the degen.eracy
of the energy level E (see Section 1-2). However, a new postulate is pot
really needed; its introduction is therefore unsatisfactory from a logical
point of view. Instead, we derive the properties of a microcanonical en-
semble from either the canonical ensemble or the grand ensemble.

First, consider a canonical enserable. A microcanonical ensemble, as the
name is meant to imply, is a degenerate canonical ensemble in which all
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systems have (virtually) the same energy. Thus, suppose we start with a
canonical ensemble, pick out just those systems with an energy level E,
place thermal insulation around each of them, and then remove these
systems from the other systems in the canonical ensemble (with energies
different from E). As a result of this operation, we have a collection of
isolated systems, all with the same N, V, and EF (a microcanonical en-
semble). This degenerate canonical ensemble* may be thought of as being
representative of a hypothetical closed, isothermal system that is somehow
restrained from having values of £ other than E = E. Another way of
saying this is that the only quantum states accessible to the system are
those with energy E. In this new ensemble, according to Eq. (1-28), the
fraction of systems P; in a given quantum state (energy E) is proportional
to e~ F/*T But E is the same for all quantum states, Q(N, V, E) in number.
Hence P; is the same for all & quantum states. Since >_; P; = 1, P; =
1/9. Then, from Eq. (1-30),
1

d ni 1
SN, V,E) = —k ZJ) P;InP; = —kQ (5 In ﬁ)

= knQN, V, E). (1-74)

This relation between the thermodynamic S and statistical-mechanical
(actually, quantum-mechanical) @ can then be employed to derive all
thermodynamic functions of interest, as we shall see below.

A microcanonical ensemble is also a degenerate grand ensemble: we
can pick out of a grand ensemble only those systems with certain pre-
seribed values of N and E. But there is a different, in fact, complementary,
way in which Eq. (1-74) can be deduced from a grand ensemble.

In what follows, we have to make use of Section 1-5, which was re-
stricted for simplicity to a one-component system, but the method and
result are independent of the number of components. In Section 1-5 we
applied the second postulate to the whole grand ensemble, or supersystem
(Fig. 1-5). That is, the supersystem itself is an example of an isolated
system. The point of view we adopt here is that the supersystem may be
regarded, for present purposes, not as an imaginary construct but as a
single, very large, real isolated system. In this case, the dashed lines in
Fig. 1-5, dividing the “supersystem” into “systems,” represent mathe-
matical rather than physical planes. A “system” (Fig. 1-6) is then an
imaginary macroscopic portion, between mathematical planes, of the
total or “supersystem.” Each “system” is open and isothermal. Note that

* We shall see in Section 2-2 that, because relative fluctuations in E about
E in a canonical ensemble are virtually negligible in magnitude, this somewhat
artificial way of forming a microcanonical ensemble is really unnecessary:
canonical and microcanonical ensembles are essentially indistinguishable in any
case.
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i System
fwith Vi

Fic. 1-6. Portion of a larger system forming a smaller, open, isothermal

system of volume V.

we cannot use this point of view in connection Wi'l‘;h a canonical ensemble,
because this ensemble requires that each “system” be closed. The way we
proceed is to employ Eq. (1-39) to find the total number of quantlflm
states @, of the “supersystem” (specified E,, N, ”Vt = NV) and relate
this number to the entropy S; of the “supersystem using (a) the connec-
tions with thermodynamics already found ff)r‘ an open, isothermal system
(Eqgs. 1-59 through 1-68), and (b) the additive pfqperty ?‘f the enttropy’,’
S, = :8, where S is the entropy of one “system” in the “supcrsystem.

To evaluate In ,, we start with
InQ, = In Y, 2(n) = InQ(n*) (1-75)

en substitute
and then subst % VBT NalAT
Ne ™ e

mi(N) = _ : (1-76)

which follows from Egs. (1-45) and (1-59), into In 2,(n) from Eq. (1-39),
to give In Q,(n*). We find
InQ(n*) = NIn 9 — D, wi(N) In nf(N)

N
nE  ANu -
=% ~ kr T OInE
E _ Np pV)_ %S
= m(ﬁ— W kT)-— %
that
> : Sl = kln Ql, (1'—77)

in agreement with Eq. (1-74).
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Equation (1-74), due to Boltzmann, is possibly the best-known equa-
tion in statistical mechanics, mainly for historical reasons. We shall dis-
cuss it further in Chapter 2. But let us note here that: (a) it applies to
an isolated system; (b) if the ground state of the system is nondegeneratc,

=1 and S= 0 (T'—0); and (¢c) for any isolated system whatever, the
more quantum states available to the system, the higher the entropy. This
Is the origin of qualitative statements which correlate the entropy with
“probability,” “randomness,” “disorder,” etc. We shall encounter many
examples of such a correlation in the present book. Incidentally, we can
appeal to thermodynamics for a quick estimate of the magnitude of Q
to be expected in statistical mechanics in general. That is, since it is found
experimentally that* S = O(Nk), InQ = O(N), and @ = O(c") —
0(10'°*"), an impressively large number.

Let us assume that, from quantum mechanics, we have Q(N, V, E) for
the system of interest. Our next problem is to calculate all thermodynamic
functions, not just the entropy S. But S is the characteristic function for
the variables N, V, E:

_1 - — Ha _7
S = dE - j5dV Z 7 AN (1-78)
Hence
1 dlnQ .
kT — ( oK >V.J\" (1-79)
P _ (dInQ _
kT ( v )E,N’ (1 80)
__ Mg _ (0InQ _
kT — < oN; >E,V,Nn#1- (1-81)

The temperature is determined by the dependence of Q on E. Since we
know from thermodynamics that T is positive, we can anticipate that Q
will increase with E for any macroscopic quantum-mechanical system.
Clearly, the same statement can also be made about QP).

In practice, except in very simple systems, QN, V, E) is not available,
and the microcanonical equations (1-74) and (1-79) through (1-81) can-
not be utilized. In particular, the restriction to constant energy F is
usually a difficulty. This can be avoided by passing to the canonical en-
semble.

* The notation O(z) means “of order z.”
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1-7 Other ensembles. Many other ensembles and partition functions
are possible and are often useful. For example, for a one-component sys-
tem, if we start with Q(N, V, E) and then sum one at a time over E, N,
and V, we obtain* the four relations (we write 1/kT = @ here for con-
venience),

InQN, V, E) = 8TS = % , (1-82)

In > (N, V, E)e " = functionof N, V, 8 = —B4, (1-83)
E

In Y, (N, V, E)e®" = function of V, B, fu = BH, (1-84)

N

In Y, (N, V, E)e™"" = function of N, E, 8p = B(TS — pV). (1-85)
14

In Eq. (1-84), H is the “heat content,” E +- pV. The summations over
possible values of E and V may be replaced by integrations in most, prob-
lems, as we shall see. But here we use the present simple notation for
convenience. The sum in Eq. (1-83) is the same, except for notation, as
the sum over energy levels in Eq. (1-37). Previously we established only
Eqs. (1-82) and (1-83), but the other two cases, and those below, can
be worked out in detail by the same general methods already used
(Problem 1-8).
Continuing, we can also sum two at a time over E, N, and V:

In Z QN, V, E)e PEe®Y — function of V, 8, up = BpV, (1-86)
EN

In Z QN, V, E)e *2¢=*PV = function of N, 8, p
BV
= —BNu = —p8F, (1-87)

In Z QN, V, E)e®¥e?"Y = function of E, fu, Bp = BE. (1-88)
NV :

Equation (1-86) is the logarithm of the grand partition function, already
encountered. The other two equations are new. Equation (1-87) is par-
ticularly importantt because it is applicable to a system with the familiar

* T, L. HiLy, J. Chem. Phys. 29, 1423 (1958). See also A. MUNsTER (Supple-
mentary Reading list); W. B. BRown, Mol. Phys. 1, 68 (1958); A. MUNSTER,
ibid. 2, 1 (1959); R. A. Sack, ibid. 2, 8 (1959).

1t W. B. BrowN, Mol. Phys. 1, 68 (1958).
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set of independent variables N, T, and p. In Eq. (1-87), F is the Gibbs
free energy, A + pV, equal to Ny for a one-component system. Finally,
we can sum over all of £, N, and V:

In E QN, V, E)e P2 N =PV — function of B, , p = 0. (1-89)
E.N.V

This is an exceptional case, since T, u, and p appear to be independent
variables, whereas we know from thermodynamics that at most two of
these variables can be independent. The special treatment necessary for
this partition function is provided elsewhere (S. M., Chapters 2 and 3).
The characteristic functions are redefined here, in a more systematic
way, as dimensionless quantities. In every case there is an appropriate
thermodynamic equation which permits calculation of other thermody-
namic functions from knowledge of the partition function. For example,

for Eq. (1-83),
d(—BA4) = —EdB + BpdV — BudN, (1-90)

or for Eq. (1-87),
d(—BF) = —E dg — Vd(8p) — BudN. (1-91)

Equation (1-90) is, of course, just a rearrangement of Eq. (1-32) for a
closed, isothermal system.

The reader has perhaps noticed that the characteristic function can be
written immediately on inspection of the partition function. The rule is:
if we replace @ by ¢TS5, then the characteristic function is the sum of the
exponents in the partition function. For example, for Eqgs. (1-83) and
(1-87), respectively:

(1-92)
BTS — BE — BpV = —BF.
The reason for the existence of this rule will be obvious from our discussion
of the thermodynamic equivalence of ensembles in Chapter 2. It depends
on the legitimacy of replacing the logarithm of a partition function by the
logarithm of its maximum term,

There are two further types of ensembles or partition functions we
should mention, since they will be encountered in the applications. First,
there are some problems in which the “external variable” V is replaced by
another external variable (e.g., length or area) or is supplemented by addi-
tional external variables (e.g., volume and area are both external vari-
ables). Second, in multicomponent systems, there are cases in which it is
helpful or necessary to regard the system as open with respect to some
components, but not all.



