24 The Role of Distinguishability

The analysis in the previous section is based on the premise that the particles are
distinguishable. This is appropriate for solid crystals where each atom is localized near a
specific point in the crystal lattice. Unfortunately, it is not appropriate for fluids in which
the particles (atoms, molecules, or fundamental particles) are free to move about within the
system volume. In systems with freely moving particles, the particles of a given species
are indistinguishable. Our task in this section is to examine how our analysis from the
previous section must be changed to account for the indistiguishability of the particles in
fluid systems.

In considering modifications to the analysis to account for indistinguishability, we will
also account for restrictions on microstate occupancy. As discussed in Section 1.8, virtually
all particles fall into two categories: bosons and fermions. There are no restrictions on the
number of bosons that may occupy any given microstate. Most atoms and molecules behave
as bosons. One exception is *He, which is a fermion. For a system of fermions, no more than
one fermion may occupy a given microstate. Electrons and protons are perhaps the most
important examples of particles that behave as fermions. The restriction on the occupanzy
of microstates for electrons is a consequence of the Pauli exclusion principle.

We first consider systems of bosons. As in the last section we are considering member
Systems in a microcanonical ensemble having specified N,, N, V, and U. If we consider
one energy level occupied by N, ; particles of species a, the number of ways of selecting tae
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N, ; particles from the total of N, particles in the system is just 1, because the particles are
indistinguishable. No matter which Ny ; we choose, the particles occupying the energy level
would “look” the same. However, we can permute the particles among the g; microstates for
the energy level in a number of ways. Because the particles are bosons, there are no restric-
tions on the way that the particles may occupy the microstates. From basic combinatorial
analysis (see Appendix I) we can determine the number of these permutations as

number of ways of arranging Ny i (g + Nai — D!
indistinguishable particles among g; microstates (g = DING!

(2.53)

Because the arrangements within energy levels are independent of one another, the total
number of ways of arranging the a species particles among the microstates is the product
of such terms for all energy levels:

number of ways of arranging 50

(gi + Nai — 1!
= H A (2.54)
L4 (g — DING!

species a particles among

microstates dictated by g; and (Na i}
A similar relation must apply for species b:

number of ways of arranging -
_ (g; + Npj — D!

. 2.55
(g; — DINp ;! (25

species b particles among
microstates dictated by g; and {Np_;} j=0
For each arrangement of the a particles, the number of possible arrangements of b particles
is given by Eq. (2.55). The total number of ways of combining the arrangements of the two
species is therefore equal to the product of the right sides of Egs. (2.54) and (2.55). We
designate this total number of microstates for the specified pair of distributions {N,.i} and
{Ny.). as
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Alternatively, the particles may be indistinguishable fermions. Again, because the par-
ticles are indistinguishable, selection of any N particles of species a for energy level i
amounts to the same occupancy. The fermions may be permuted among the g; microstates,
but no more than one may occupy a given microstate. Thus a microstate is either occupied
by one particle or unoccupied. Combinatorial analysis again provides the means to calculate
the number of such arrangements (see Appendix I):

number of ways of selecting N, i microstates i!
{ of ways of 8 Nai } 8i (2.57)

10 be occupied from g; total microstates Nail(gi = Nai) 1

Because the arrangements within the energy levels are independent, the total number of
system microstates is the product of terms like the right side of Eq. (2.57) for all energy

levels:
number of ways of arranging
. . i '
species a particles among = & (2.58)

microstates dictated by g; and (N, ;) i=0 Nait(gi = Nai)!

The corresponding equation for species b is
number of ways of arranging -
species b particles among = H 34" (2.59

) ) AT .
microstates dictated by g; and {Ny, ;) j=0 Ni.j!(gj = No )t

As in the case for bosons, the total number of microstates for the two-species system is th

Produ(fl of.lhe terms on the right sides of Eqgs. (2.58) and (2.59). To indicate that this result
is for fermions, we denote the total number of microstates as

o N i '
W = T8 8! )
E, Nai!(gi — Nai)! H i (g) — Np )t (2.60)

Tl:e }mal number of microstates for either bosons or fermions can be represented by the
relation

w.,,,‘f((Nai,'}‘{,vh.,l)=ﬁ Lg: + n(Nay = DI ﬁ_lxﬁn(f\‘h,f— ny
(& =1 = ENo)INGi! g (8 = n = ENp DINy 1

i=0

(2.61)
where W for indistinguishable bosons corresponds to
n=1, =0 (indistinguishable bosons), (2.62)
and for indistinguishable fermions we set
n =0, E=1 (indistinguishable fermions). (2.63)

For systems containing indistinguishable bosons or indistinguishable fermions, we again
seek to.ﬁnd the occupation number sets {N, i}, {N,_;} that maximize In W subject to the
cons'lra'mls (2.1)~+2.3). As before, we interpret the pair of occupation number sets that
maximizes In W as being the equilibrium distribution for the system. Taking the natural log
of both sides of Eq. (2.61) and rearranging yields -

In Wy =Y Inflg; + n(No — DI} — Z In{lg; —n — ENg1Y)

i=0 i=0

= Y InfNg Y Inflg; + n(Ny — DI

1=0 j=0

- Zlnl[.ﬂj—ﬂ*&w.jl!] ~Zln{N,,‘,-!}. (2.64)
— —
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Since all the factorials on the right side of Eq. (2.64) are expected to be large, we apply
Stirling’s approximation to each:

5o
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(2.65)

Using the constraint relations (2.1) and (2.2), the above relation simplifies to

o
In Wyr = Zlig. 4 1(Nay — DIInfgi + n(Nay = D} = (8 =1 = ENa]

i=0

x Infg; — 1 — ENg.i) — Nai InNg i+ (1 —n~- EINa)
oo

+ Z[[E,‘ (N — DInfg; + (Ve — D= g7 =1 = ENp, i
=0

% In{g; —n —ENp ) = NpjInNpj + (1 =n— EYNy i1 (2.66)

Differentiating, we obtain
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Setting d(In Wy,g) = 0 and simplifying yields

3 nin{gi + n(Nag = D} + & Infg =0 = ENgs) = InNai1dNo,
i=0
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12.68)

Using the method of Lagrange multipliers, we multiply the differential constraint relitions
(2.16a), (2.16b), and (2.16¢) by A, 22, and A3, respectively, add the resulting equations,
and subtract Eq. (2.68). The final result is

20
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which simplifies to
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f\l the maximum, the coefficients of the dN,; and dNj,_; terms must all be zero, which
implies that

a4 g — nIn{g + n(Nai — 1) = Enfg; — n — ENgi} +In Ny =0

12.71a)
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12.71b)
For bosons, we set = 1 and & = 0 in Eqgs. (2.71a,b) and rearrange to obtain
y . Nai
Nyj = gie e ™" (l + - i> . 12.722)
8i 8i

. Y Np.; |
Ny = gje e (l o ~) (for bosons). 12.72b)
g 8



For fermions, we set = 0 and & = 1 in Egs. (2.71a,b) and obtain

7 =hy ,—AaE Nﬂ-i
Noi=gie Ve ™ [ 1—— ], (2.73a)
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Ny, j = gje e 1 - —z— (for fermions). (2.73b)
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Equations (2.72a,b) and (2.73a.b) can be solved explicitly for N ; and Ny, ;, but the resulting
relations are complicated and it is difficult to carry the analysis further. Instead, we note
that for systems of particles with moderate to high energies, the degeneracy of the most
populated energy levels is enormous (see Example 1.4). For such circumstances, the number
of microstates for each energy level is much larger than the number of particles in the system
occupying that level and very few of the available microstates are occupied. Systems in
which this is true are said to exhibit dilute occupancy. For conditions that result in dilute
occupancy, No.i /8 Nb. il 1/g:, and 1/g; are negligible compared to one. If we neglect
these ratios compared to one in Eqs. (2.72a,b) and (2.73a,b), we find that both sets of
equations reduce to

Noj = gie e, (2.74)

Ny = gje e ™. (2.74b)

Using the constraints (2.1) and (2.2) on N, ; and N, j, we can eliminate the multipliers
and A, and obtain

Nmi g,(.’—‘}':‘("
N = —‘Z-.‘?—Ee*’-“" (2.75a)
“ =08 (for indistinguishable bosons or fermions)
N e in the limit of dilute occupancy
. o~ MEj
5. 8 (2.75b)
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which is identical to the Boltzmann statistics result obtained for distinguishable particles
with no restrictions on microstate occupancy.

Although the form of the distributions (2.75a.b) is the same as Boltzmann statistics for
distinguishable particles, the relations for W for indistinguishable bosons and fermions are
different from the relation for W that applied to distinguishable bosons. We must therefore
reexamine how the change in the relation for W affects the thermodynamic properties for
the system. Since by definition § = kg In W, we set S/ kg equal to the right side of Eq. (2.66),
and use the distributions (2.75a,b) to evaluate N, ; and Nj ;. In addition, because we have
dilute occupancy, we neglect Ny Jgi Ny ifgi Vg and 1/g; compared to one, where
appropriate. For both the boson and fermion particle types, the resulting equation for S/ ks
reduces to
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E =3U +NyInZ, = NgInN, + NyInZy — NpIn Ny + N + Np. (2.76)
To evaluate k3 we use the same approach as was used in Section 2.3 for distinguishable
particles. We differentiate with respect to A3, evaluate the derivatives and solve for 1. The

result of this manipulation is
! 1
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1t follows directly that for a system that exhibits dilute occupancy, the distributions and e
partition function definitions for indistinguishable bosons or fermions are identical to he
Boltzmann statistics case:

Na.i _ g,e—r.,;‘kBT
N, Z. (2.4%a)
Nh,_, _ gj(,ﬂ‘;k.,?
Ny Zn - (2.4'b)
where
Z, = Z g’e—r,,‘kg'r , (2.50a)
i=0
o0
Z,=y g (2.3b)
j=0

It follows from these relations and the energy constraint (2.3) that the relation for U is
identical to that for Boltzmann statistics of distinguishable particles:
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Substituting 13 = 1/kpT into Eq. (2.76) yields the following relation for the entropy:
N U Za Zy
_— e—— J e i il f
ke = kaT +N‘,ln{Nﬂ}+Abln{Nh}+1\,,+N,,. (278)

Note that this relation differs from the entropy relation obtained for distinguishable bosms.
The net effect of particle indistinguishability is to reduce the entropy of the system. Equatans
(2.49),(2.50), (2.52), and (2.78) thus provide the linkage between microscale energy stomge
and {he macroscopic thermodynamic properties for a system of indistinguishable bosor: or
fermions in the moderate to high energy limit where dilute occupancy occurs.

What about low-energy systems? It turns out that in very cold systems we cannot imoke
the dilute occupancy approximation and we must allow for low degeneracy and quanum
effects in the analysis of the statistical behavior of such systems. We will return to exanine
such systems in more detail in Section 6.4. Fortunately, in engineering applications the
overwhelming majority of system types and particle energy levels encountered do 1= in
ranges where dilute occupancy occurs. The results summarized above therefore provile a
useful foundation for thermodynamic analysis of this broad range of system types.



