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CHAPTER 3
Statistical Mechanics

We now turn our attention to the molecular foundation of thermo-
dynz_imlcs, or more generally, the answer to the following question: If
partlgles (atoms, molecules, or electrons and nuclei, . . .) ol;e
certain microscopic laws with specified interparticle interactionsy
what are the observable properties of a system containing a ver);
largq number of such particles? That is, we want to discuss the
relationship between the microscopic dynamics or fluctuations (as
governed by Schrédinger’s equation or Newton’s laws of motion) and
the observed properties of a large system (such as the heat capacit
or equation of state). ’
The task of solving the equations of motion for a many-bod
system (say N = number of particles ~10%) is so complicated tha)t,
even modern day computers find the problem intractable. (Though
scientists do use computers to follow the motion of thousands of
partlf:les for times often long enough to simulate condensed phases
for times of the order of 107'° or 10~ sec.) At first you might think
that as the number of particles increases, the complexity and
obscurity of the properties of a mechanical system should increase
tremendously, and that you would be unable to find any regularity in
the behavior of a macroscopic body. But as you know fryom
thermodynamics, large systems are, in a sense, quite orderly. An
example is the fact that at thermodynamic equilibrium one' can
characterize observations of a macroscopic system with only a
h:cm.dful. of variables. The attitude we shall take is that tlilese
distinctive regularities are consequences of statistical laws governin
the behavior of systems composed of very many particles. We wilgl
thereby avoid the need to directly evaluate the precise N—particlc
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dynamics, and assume that probability statistics provides the correct
description of what we see during a macroscopic measurement.

The word “measurement” is important in these remarks. If we
imagined, for example, observing the time evolution of one particular
particle in a many-body system, its energy, its momentum, and its
position would all fluctuate widely, and the precise behavior of any of
these properties would change drastically with the application of the
slightest perturbation. One cannot imagine a reproducible measure-
ment of such chaotic properties since even the act of observation
involves a perturbation. Further, to reproduce the precise time
evolution of a many-body system, one must specify at some initial
time a macroscopic number (~10%) of variables. These variables are
initial coordinates and momenta of all the particles if they are
classical, or an equally cumbersome list of numbers if they are
quantal. If we would fail to list just one of these 10* variables, the
time evolution of the system would no longer be deterministic, and
an observation that depended upon the precise time evolution would
no longer be reproducible. It is beyond our capacity to control 10%
variables. As a result, we confine our attention to simpler properties,
those controlled by only a few variables. In some areas of physical
and biological science, it might not be easy to identify those
variables. But as a philosophical point, scientists approach most
observations with an eye to discovering which small number of
variables guarantees the reproducibility of phenomena.

The use of statistics for reproducible phenomena does not imply
that our description will be entirely undeterministic or vague. To the
contrary, we will be able to predict that the observed values of many
physical quantities remain practically constant and equal to their
average values, and only very rarely show any detectable deviations.
(For example, if one isolates a small volume of gas containing, say,
only 0.01 moles of gas, then the average relative deviation of the
energy of this quantity from its mean value is ~10~'!. The probability
of finding in a single measurement a relative deviation of 107° is
~1073%19" ) As a rough rule of thumb: If an observable of a many
particle system can be specified by a small number of other
macroscopic properties, we assume that the observable can be
described with statistical mechanics. For this reason, statistical
mechanics is often illustrated by applying it to equilibrium thermo-
dynamic quantities.

3.1 The Statistical Method and Ensembles

While it is not possible in practice, let us imagine that we could
observe a many-body system in a particular microscopic state. Its
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characterization would require an enormous number of variables. For

example, suppose the system was quantal obeying Schrédinger’s
equation

-
zhalw>=9€lw>-

Here, as always, 2xh is Planck’s constant, # is the Hamiltonian
operating on the state vector |y ), and ¢ is the time. To specify the

state |¢) at a particular time, we need a number of variables of the
order of N, the number of particles in the system.

Consider, for example, stationary solutions

Xly,)=E,|p,),

and some simple and familiar quantum mechanical systems such as
_the hydrogen atom, or non-interacting particles in a box. The index v
is then the collection of D - N quantum numbers, where D is the
dimensionality.

Once' the initial state is specified, if it could be, the state at all
future: times is determined by the time integration of Schrodinger’s
eqpatlon. The analogous statement for classical systems considers
points in phase space

(rN)pN)E(rlyr27 v ’rN;ply' .. 7pN))

where Rs and p; are the coordinates and conjugate momenta
respectively, for particle i. Points in phase space characterizé
completely the mechanical (i.e., microscopic) state of a classical
system, and flow in this space is determined by the time integration
of Newton’s equation of motion, F = ma, with the initia phase space
point providing the initial conditions.

Exercisg 3.1 Write down the differential equations cor-
responc!mg to Newton’s laws when the total potential
energy is the function U(ry, r,, . . . L EN).

Now try to think about this time evolution—the trajectory—of a
many-body system. As illustrated in Fig. 3.1, we might picture the
evolqtion as a line in “state space” (phase space in the classical case
or Hilbert space spanned by all the state vectors (%) in the quantai
case). In preparing the system for this trajectory a certain small
number of variables is controlled. For example, we might fix the
total energy, E, the total number of particles, N, and the volume, V.
These constraints cause the trajectory to move on a “surface” of state

}sl;_)a;e~though the dimensionality of the surface is still enormously
igh.
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Fig. 3.1. Trajectory in state space with each box representing a different state.

A basic concept in statistical mechanics is that if we wait long
enough, the system will eventually flow through (or arbitrarily close
to) all the microscopic states consistent with the constraints we have
imposed to control the system. Suppose this is the case, and imagine
that the system is constantly flowing through the state space as we
perform a multitude A of independent measurements on the system.
The observed value ascertained from these measurements for some

property G is

M=

Gobs = Gﬂ 4

1

1
Ng
where G, is the value during the ath measurement whose time
duration is very short-—so short, in fact, that during the ath

measurement the system can be considered to be in only one
microscopic state. Then we can partition the sum as

G = 2 [l (number of times state v is )]
obs ™ N \observed in the & observations/j

v

where G, = (v| G |v) is the expectation value for G when the system
is in state v. The term in square brackets is the probability or weight
for finding the system during the course of the measurements in state
v. Remember, we believe that after a long enough time, all states are
visited. We give the probability or fraction of time spent in state v
the symbol P, and write

Gobs= 2 PVGV = <G>

The averaging operation (i.e., the weighted summation over G,)
indicated by the pointed brackets, (G), is called an ensemble
average. An “‘ensemble” is the assembly of all possible microstates—
all states consistent with the constraints with which we characterize
the system macroscopically. For example, the microcanonical en-
semble is the assembly of all states with fixed total energy E, and
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fixed size (usually specified by number of molecules, N, and volume,
V). The canonical ensemble, another example, considers all states
with fixed size, but the energy can fluctuate. The former is appropri-
ate to a closed isolated system; the latter is appropriate for a closed
system in contact with a heat bath. There will be much more said
about these ensembles later.

The idea that we observe the ensemble average, (G ), arises from
the view in which measurements are performed over a long time, and
that due to the flow of the system through state space, the time
average is the same as the ensemble average. The equivalence of a
time average and an ensemble average, while sounding reasonable, is
not at all trivial. Dynamical systems that obey this equivalence are
said to be ergodic. It is difficult, in general, to establish the principle
of ergodicity, though we believe it holds for all many-body systems
encountered in nature. (It is often true for very small systems too,
such as polyatomic molecules. Indeed, the basis of the standard
theories of unimolecular kinetics rests on the assumed ergodic nature
of intramolecular dynamics.)

Exercise 3.2 Give some examples of non-ergodic systems.
That is, describe systems that do not sample all possible
states even after a very long time.

Incidentally, suppose you thought of employing stationary solu-
tions of Schrddinger’s equation to specify microscopic states. If truly
in a stationary state at some point in time, the system will remain
there for all time, and the behavior cannot be ergodic. But in a
many-body system, where the spacing between energy levels is so
small as to form a continuum, there are always sources of perturba-
tion or randomness (the walls of the container, for example) that
make moot the chance of the system ever settling into a stationary
state.

The primary assumption of statistical mechanics—that the ob-
served value of a property corresponds to the ensemble average of
that property—seems reasonable, therefore, if the observation is
carried out over a very long time or if the observation is actually the
average over very many independent observations. The two situa-
tions are actually the same if “long time” refers to a duration much
longer than any relaxation time for the system. The idea that the
system is chaotic at a molecular level leads to the concept that after
some period of time—a relaxation time, Trelax—the system will lose
all memory of (i.e., correlation with) its initial conditions, Therefore,
if 2 measurement is performed over a period T, that is N

relax»
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the measurement actually corresponds to & independent obser-
vations. .
In practice, we often consider measurements on _macroscoplc
systems that are performed for rather short periods of time, and the
concept of ensemble averages is applicable for these situations, too.
This can be understood by imagining a division of the observed
macroscopic system into an assembly of many macroscopic sub-
systems. If the subsystems are large enough, we expect tl'lat the
precise molecular behavior in one subsystem is gncorrelated with that
in any of the neighboring subsystems. The distance across one.of
these subsystems is then said to be much larger than the cor.relatzon
length or range of correlations. When subsystems are 't.hls large
they behave as if they are macroscopic. Under these copdltlons, one
instantaneous measurement of the total macroscopic system is
equivalent to many independent measurements of the macroscopic
subsystems. The many independent measurements should correspond

to an ensemble average.

3.2 Microcanonical Ensemble and the Rational Foundation of
Thermodynamics

The basic idea of statistical mechanics is, therefore, that_ durin_g a
measurement, every microscopic state or fluctuation that is possible
does in fact occur, and observed properties are actually the averages
from all the microscopic states. To quantify this idea, we neec} to
know something about the probability or distribution of the various
microscopic states. This information is obtained from an assumption
about the behavior of many-body systems:

For an isolated system with fixed total energy E, and fixed
size (perhaps specified by the volum.e V and numbers of
particles N;, N, ...) all microscopic states are equally
likely at thermodynamic equilibrium.

In other words, the macroscopic equilibrium state corresponds to t.he
most random situation—the distribution of microscopic states with
the same energy and system size is entirely uniform.

Exercise 3.3 List several everyday examples supporting
this statistical characterization of the terminal state of.a
macroscopic system (e.g., the behavior of a drop of ink in
a glass of water).
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To examine the implications of this reasonable assumption, let us
define

Q(N, V, E) = number of microscopic states with N and v,
and energy between E and E — 8E.

For notational and perhaps conceptual simplicity, we often omit
subscripts and simply write N to refer to the number of particles, and
we use the volume V to specify the spatial extent of the system. Our
remarks, however, are not confined to one-component three-
dimensional systems. The width 8E is some energy interval charac-
teristic of the limitation in our ability to specify absolutely precisely
the energy of a macroscopic system. If 8E was zero, the quantity
Q(N, V, E) would be a wildly varying discontinuous function, and
when it was non-zero, its value would be the degeneracy of the
energy level E. With a finite 6E, Q(N,V, E) is a relatively
continuous function for which standard mathematical analysis is
permissible. It will turn out that the thermodynamic consequences
are extraordinarily insensitive to the size of 8E. The reason for the
insensitivity, we will see, is that Q(N, V, E) is typically such a rapidly
increasing function of E, that any choice of 8E < E will usually give
the same answer for the thermodynamic consequences examined
below. Due to this insensitivity, we adopt the shorthand where the
symbol SE is not included in our formulas.

For macroscopic systems, energy levels will often be spaced so
closely as to approach a continuum. In the continuum limit it can be
convenient to adopt the notation

Q(N, V, E) dE = number of states with energy
between E and E + dE,

where Q(N, V, E), defined by this equation, is called the density of
states. In the applications we pursue, however, we will have little
need to employ this notation.

Exercise 3.4 For a system with discrete energy levels, give
a formula for the density of states, Q(N,V,E).
[Hint:  You will need to use the Dirac delta function.]

According to the statistical assumption, the probability of a
macroscopic state v for an equilibrium system is

P, =1/Q(N, V, E)

for all states in the ensemble. For states outside the ensemble, for
example those for which E, + E, P, is zero. This ensemble, which is
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appropriate to a system with fixed energy, volume, and Particl.e
number—the assembly of all microstates with these constraints—is
called a microcanonical ensemble. .

We can also consider as a definition of entropy the quantity

S=ksInQN, V, E),

where kg is an arbitrary constant. (It’s called Boltzmann’s constant
and we shall find that from comparison with experiment that it has

the value
kp=1.380 x 10" erg/deg.)

Notice that S defined in this way is extensive since if the total system
were composed of two independent subsystems, A and B, with
number of states Q4 and Q separately, then the total number would
be Q,Qp. Thatis, Si,5=kpIn(R,R2p) =S4 +'SB'.

The definition is also consistent with the variational statements of
the second law of thermodynamics. To see why, imagine dividing the
system with fixed total N, V, and E into two su(lz)systegl;ls a(rll)d
constraining the partitioning of N, V, and E to b'e. N - N ; VA,
V®; and E®, E®, respectively. Any specific partitioning is a subset
of all the allowed states, and therefore the number of states with this
partitioning, Q(N, V, E; internal constraint) is less than the total
number Q(N, V, E). As a result,

S(N, V, E) > S(N, V, E; internal constraint).

This inequality is the second law, and‘ we now see its stgtistical
meaning: the maximization of entropy c01n'c1d.1ng.w1th the flttamment
of equilibrium corresponds to the maximization _of flxsorder or
molecular randomness. The greater the microscopic disorder, the

larger the entropy. o
%’he temperature T is determined from the derivative (3S/9E)y,v=

1/T. Therefore,
ﬂ = (ICBT‘)_1 = (a 11'1 Q/aE)N’V.
The thermodynamic condition that temperature is positive requires

that Q(N, V, E) be a monotonic increasing function of E. For
macroscopic systems encountered in nature, this will always be the

case. _ .
Before accepting this fact as an obvious one, however, consider

the following puzzle: Suppose a system of N non-interacting spins in
a magnetic field H has the energy

N
- Z wH, ui =t
j=1
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In the ground state, all the spins are lined up with the field, and
Q = 1. In a first excited state, one spin is flipped and = N. The next
excitation has two spins flipped and Q=N(N - 1)/2. Everything
looks fine until we realize that the degeneracy of the most excited
state is 1. Thus, at some point, Q(E, N, V) becomes a decreasing
function of E, which implies a negative temperature. How could this
be?

Exercise 3.5 Answer this question.

Assuming (8Q/3E)y,y, ¢ is positive, the statistical postulate that at
fixed N, V, and E all microstates are equally likely provides a
molecular foundation for the theory of thermodynamics. The many
results derived during our discussion of that topic (concerning
stability, phase equilibria, Maxwell relations, etc.) are all conse-
quences of this single fundamental law of nature

3.3 Canonical Ensemble

When applying the microcanonical ensemble, the natural variables
characterizing the macroscopic state of the system are E, V, and N.
As we have seen in the context of thermodynamics, it is often
convenient to employ other variables, and various representations of
thermodynamics are found by applying Legendre transforms. In
statistical mechanics, these manipulations are related to changes in
ensembles. As an important example, we consider now the canonical
ensemble—the assembly of all microstates with fixed N and V. The
energy can fluctuate, however, and the system is kept at equilibrium
by being in contact with a heat bath at temperature T (or inverse
temperature ).

Schematically, we might picture the ensemble as in Fig. 3.2, The
states we refer to here with the label v are states of definite
energy—eigenfunctions of Schrédinger’s equation, Hy, = Ey,.

A system for which the canonical ensemble is appropriate can be
viewed as a subsystem of ome for which the microcanonical is
applicable. See Fig. 3.3. This observation allows us to derive the
distribution law for states in the canonical ensemble.

To begin, consider the case where the bath is so large that the
energy of the bath, Eg, is overwhelmingly larger than the energy of
the system, E,. Further, the bath is so large that the energy levels of
the bath are a continuum and dQ/dE is well defined. The energy in the
system fluctuates because the system is in contact with the bath, but
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State 1 2 v
E
Nf Y Nf 2, e Ny vee
Bath B8 B i

Fig. 3.2. Assembly of states for a closed system in a heat bath.

the sum E = Eg + E, is a constant. If the system is in one deﬁnit.e
state v, the number of states accessible to the system plus b'fltl? is
Q(Eg)=Q(E —E,). Therefore, f'iccording to the statlstlc?l
postulate—the principle of equal weights—the equilibrium probabil-
ity for observing the system in state v obeys

P,xQ(E—-E,)=exp[ln Q(E—-E,)]
Since E, < E, we can expand In Q(E — E,) in the Taylor series
InQE-E,)=InQE)-E,(dInQ/dE) + - - -.

We choose to expand In Q(E) itself because the latter is a mgch more
rapidly varying function of E than the former. We be!leve this
because the formula § = kg In Q suggests that In Q is relatively well
behaved. - o ‘
By retaining only those terms exhibited gxphcntly in the expansion
(which is valid because the bath is considered to be an infinite
thermal reservoir), and noting (3 In Q/3E)y = 8, we obtain

P, xexp(—-BE,),

which is the canonical (or Boltzmann) distribution law. The constant
of proportionality is independent of the specific state of the system
and is determined by the normalization requirement

>P =1

Bath £y
Total is:
isolated
System with fixed
£, N V.and E

Fig. 3.3. A canonical ensemble system as a subsystem to microcanonical
subsystem.
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Hence,

P,=Q 'exp(-BE,),
where

Q(ﬂ’ N, V) = z e_BE".

The function Q(B, N, V) is called the canonical partition function. It
depends upon N and V through the dependence of the E.’s on these
variables.

As an instructive example of its use, consider the calculation of
the internal energy E(B, N, V), which is (E) in the canonical
distribution:

(E)=(E,)=3 P,E,

=S Ee 5 /3 ooe
v v’

= "(aQ/aIS)N,V/Q
=—(3InQ/3B)n,v,

which suggests that In Q is a familiar thermodynamic function. In
fact, we will soon show that ~B7'In Q is the Helmhoitz free energy.
For the next few pages, however, let us take this fact as simply given.

Exercise 3.6 Show that (3BA/3B)nv=E, where A=E —
TS is the Helmholtz free energy.

—_—m

The energies E, refer to the eigen values of Schrédinger’s
equation for the system of interest. In general, these energies are
difficult, if not impossible, to obtain. It is significant, therefore, that a
canronical ensemble calculation can be carried out independent of the
exact solutions to Schrodinger’s equation. This fact is understood as
follows:

0= e =3 (viehy)

v

=Tre %%

where “Tr” denotes the trace of a matrix (in this case, the trace of
the Boltzmann operator matrix). It is a remarkable property of traces
that they are independent of the representation of a matrix. (Proof:
TrA=TrSS™'A=TrS 'AS.) Thus, once we know ¥ we can use
any complete set of wavefunctions to compute Q. In other words,
one may calculate Q =exp(—BA) without actually solving
Schrodinger’s equation with the Hamiltonian 9.
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Exercise 3.7 Show that the internal energy, which is the
average of E,, can be expressed as Tr (e ~5%)/Tr(e %),

When calculating properties like the internal energy from the
canonical ensemble, we expect that values so obtained should be the
same as those found from the microcanonical ensemble. Indeed, as
the derivation given above indicates, the two ensembles will be
equivalent when the system is large. This point can be illustrated in
'wo ways. First, imagine partitioning the sum over states in Q into
sroups of states with the same energy levels, that is

Q= 2 et

v(states)

= > Q(E)e PE,
{(levels)
where we have noted that the number of states, Q(E), is the
degeneracy of the /th energy level. For a very large system, the
spacing between levels is very small, and it seems most natural to
pass to the continuum limit

0— f " dEQ(E)e~#E,

where Q(E) is the density of states. In other words, for large
systems, the canonical partition function is the Laplace transform of
the microcanonical Q(E). An important theorem of mathematics is
that Laplace transforms are unique. Due to this uniqueness, the two
functions contain the identical information.

Nevertheless, energy fluctuates in the canonical ensemble while
energy is fixed in the microcanonical ensemble. This inherent
difference between the two does not contradict the equivalency of
ensembles, however, because the relative size of the fluctuations
becomes vanishingly small in the limit of large systems. To see why,
let us compute the averaged square fluctuation in the canonical
ensemble:

((BEY*) = ((E—(E))»)
=(E*) - (E)?
2
=S rE-(3 P.E,)
= 0 (3Q/3BYny — QHI0I3BR, v

=(&InQ/3B% Ny
= _(8<E>/aﬁ)N,V~
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Noting the definition of heat capacity, C, = (3E/ 3T )y v, we have
((BE)*) =ksT?C,,

which is a remarkable result in its own right since it relates the size of
spontaneous fluctuations, ((8E)?), to the rate at which energy will
change due to alterations in the temperature. (The result fore-
shadows the topics of linear response theory and the fluctuation-
dissipation theorem, which we will discuss in Chapter 8.) In the
present context, we use the fluctuation formula to estimate the
relative r.m.s. value of the fluctuations. Since the heat capacity is
extensive, it is of order N (where N is the number of particles in the
system). Furthermore (E) is also of order N. Hence the ratio of the
dispersion to the average value is of order N~'2; that is,

V([E—(E>]T>m\/kaT2Cu~0(_1_)
(E) ~ (E) VN/'

For a large system (N ~ 10%) this is a very small number and we may
thus regard the average value, (E), as a meaningful prediction of the
experimental internal energy. (For an ideal gas of structureless
particles, C, =3Nkg, (E)=3NK,T. Suppose N ~ 10%, then the
ratio above is numerically ~10~"".) Furthermore, the microcanonical
E, when written as a function of 8, N, V by inverting
(8InQ/3E)y = B(E, N, V), will be indistinguishable from the can-
onical internal energy (E) provided the system is large.

Exercise 3.8 Note that the probability for observing a
closed thermally equilibrated system with a given energy
E is P(E)xQ(E)e " =exp[InQ(E)-BE]. Both
In Q(E) and —BE are of the order of N, which suggests
that P(E) is a very narrow distribution centered on the
most probable value of E. Verify this suggestion by
performing a steepest descent calculation with P(E). That
is, expand InP(E) in powers of 0E=FE — (E), and
truncate the expansion after the quadratic term. Use this
expansion to estimate for 0.001 moles of gas the probabil-
ity for observing a spontaneous fluctuation in E of the size
of 1075(E).

3.4 A Simple Example

To illustrate the theory we have been describing, consider a system of
N distinguishable independent particles each of which can exist in
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one of two states separated by an energy £. We can specify the state
of a system, v, by listing

v=(ny, Ry .00, Ny, By), n;j=0or1,
where n; gives the state of particle j. The energy of the system for a
given state is

where we have chosen the ground state as the zero of energy.

To calculate the thermodynamic properties of this model, we first
apply the microcanonical ensemble. The degeneracy (_)f the mth
energy level is the number of ways one may choose m objects from a

total of N. That is,
Q(E, N)=N!/(N—-m)'m!,
where
m=E/e
The entropy and temperature are given by
Slkp=InQ(E, N)

and
B=1/kyT=(3InQ/3E)x
=¢7(31n Q/3m)y.
For the last equality to have meaning, N must be large enough that
Q(E, N) will depend upon m in a continuous way. The continuum
limit of factorials is Stirling’s approximation: In M!=M In M - M,
which becomes exact in the limit of large M. With that approximation
3 N! 3
—In———=——[(N=-m)In (N —m)
om In (N —m)im! om ¢ )

~(N-m)+mlnm—m]

N
=In (— - 1).
m
Combining this result with the formula for g yields
=i (X-1)
Be=In p
or m 1
N 1+efe



68 INTRODUCTION TO MODERN STATISTICAL MECHANICS

As a result, the energy E = me as a function of temperature is
1
=Ne——
1+ePe

which is 0 at T = 0 (i.e., only the ground state is populated), and it is
Ne/2 as T— = (i.e., all states are then equally likely),

Exercise 3.9 Use Stirling’s approximation together with
the formula for m/N to derive an expression for S(B, N)
Show that as f— (i.e., T— 0), S tends to zero. ,Fin(i
S(E, N) and examine the behavior of 1/T as a function of

E/N. Show that for some values of E/N, 1/T can be
negative,

Of _course, we could also study this model system with the
canonical ensemble. In that case, the link to thermodynamics is

—-BA=InQ=In) e P&
Use of the formula for E, gives
N
0BN= % exp[-p3 en]
nyung,..ony=0,1 j=1

since the exponential factors into an uncoupled product
b4

(B, N)=ﬁ > ehen

J=1n;=0,1

=(1+e PN
As a result ( e

~BA=NIn(1+e ),
The internal energy is
3(—PA ~Be
(E) = (M) =N
3(~B) /n 1+e 8¢
= Ne(1+ef) !,

in precise agreement with the result obtained wit

h the mi i
oy Prece microcanonical

.
Exercise 3.10 Determine the entropy using |

—p(A -~ (E)) =S/kg

and show the .result is the same as that obtained for large
N from the microcanonical ensemble.

—_—m—
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Ng, Eg —————— Reservoir or bath

N, E, System

Fig. 3.4. System immersed in a bath.

3.5 Generalized Ensembles and the Gibbs Entropy Formula

Let us consider now, in a rather general way, why changes in
ensembles correspond thermodynamically to performing Legendre
transforms of the entropy. To begin, consider a system with X
denoting the mechanical extensive variables. That is, §=
kzIn Q(E, X), and

k3'dS = BdE + £ dX.

For example, if X =N, then &= —Bu. Or if X was the set of
variables V, Ny, N, ..., then & would correspond to the conjugate
set Bp, —Bu1, —BHa, - . . , respectively. The quantity —&/f therefore
corresponds to f of Chapters 1 and 2.

Imagine an equilibrated system in which E and X can fluctuate. It
can be viewed as a part of an isolated composite system in which the
other part is a huge reservoir for E and X. An example could be an
open system in contact with a bath with particles and energy flowing
between the two. This example is pictured in Fig. 3.4.

The probability for microstates in the system can be derived in the
same way we established the canonical distribution law. The result is

P, =exp(—BE, — EX,)/E,

==Y exp(~pE, — EX,).

with

Exercise 3.11 Verify this result.

The thermodynamic E and X are given by the averages
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and

(X =5 Px,= [%L

where Y refers to all the extensive variables that are not fluctuating in
the system. In view of the derivative relationships,

dinE=-(E)dB - (X) dt.

Now consider the quantity

F=—kz > P,InP,.

We have

¥=~ky >, P[-InE - BE, — £X,]
=kp{lnZ+ B(E) + E(X)).

Therefore, ¥/kg is the Legendre transform that converts InZ to a
function of (E) and (X); that is,

dS = Bkpd(E) + Ekpzd(X),

which implies the & is, in fact, the entropy S. Thus in general

F: —ks > P,InP,.

This result for the entropy is a famous one. It is called the Gibbs
entropy formula.

Exercise 3.12 Verify that the microcar;onical S=
kg ln Q(N, V, E) is consistent with the Gibbs formula.

-_—

The most important example of these formulas is that of the grand
canonical ensemble. This ensemble is the assembly of all states
appropriate to an open system of volume V. Both energy and particle
number can fluctuate from state to state, and the conjugate fields that
control the size of these fluctuations are 8 and ~Bu, respectively.

Thus, letting v denote the state with N, particles and energy E,, we
have "

PV = E—l exp (“ﬁEv + ﬂ.qu)}
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and the Gibbs entropy formula yields
§=—kg 2 P[-InE - BE, + BuN,]
= ~kp[~InE - B(E) + Bu(N)],

or, on rearranging terms
InZ=pgpV,

where p is the thermodynamic pressure. Note that

E=, exp(—BE, + BuN,)

is a function of B, Bu, and the volume. (It depends upon volume
because the energies E, depend upon the size of the system.) Hence,
the “free energy” for an open system, SpV, is a natural function of
B, Bu, and V.

Fluctuation formulas in the grand canonical ensemble are analyzed
in the same fashion as in the canonical ensemble. For example,

((BN)?) = (N = (N))?) = (N?) — (N)?
=2 NP, - 3 S NN, PP,

=[*InE/3(Bu)ls,v,
or
((ON)?*) = (8(N)/3Bu)g,v -

Generalizations to multicomponent systems can also be worked out
in the same way, and they are left for the Exercises.

Recall that in our study of thermodynamic stability (i.e., the
convexity of free energies) we found that (3n/8u)=0. Now we see
the same result in a different context. In particular, note that
(N) =nN,, where N, is Avogadro’s number, and since 6N =N —
(N) is a real number its square is positive. Hence, 3(N)/3fu =
((8N)?) = 0. Similarly, in Chapter 2, we found from thermodynamic
stability that C, =0, and in this chapter we learn that k,T?C, =
((8E)?) = 0. In general, statistical mechanics will always give

— (3(X)/38) = ((8X)*).

The right-hand side is manifestly positive, and the left-hand side
determines the curvature or convexity of a thermodynamic free
energy.
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Region of interest with m
cells

1 Cell

Huge total system with fixed
number of particles, Ntorar

Fig. 3.5. Partitioning into cells.

3.6 Fluctuations Involving Uncorrelated Particles

In this section we will illustrate how the nature of spontaneous
microscopic fluctuations governs the macroscopic observable behavior
of a system. In the illustration, we consider concentration or density
fluctuations in a system of uncorrelated particles, and we show that
the ideal gas law (i.e., pV = nRT) follows from the assumption of no
interparticle correlations. We will return to the ideal gas in Chapter 4
where we will derive its thermodynamic properties from detailed
considerations of its energy levels. The following analysis, however,
is of interest due to its generality being applicable even to large
polymers at low dilution in a solvent.

To begin we imagine partitioning the volume of a system with cells
as pictured in Fig. 3.5. Fluctuations in the region of interest follow
the grand canonical distribution law described in Sec. 3.5. We will
assume that the cells are constructed to be so small that there is a
negligible chance for more than one particle to be in the same cell at
the same time. Therefore, we can characterize any statistically likely
configurations by listing the numbers (ny,n,, ..., n,,), where

n; =1, if a particle is in cell i
={, otherwise.

Ir} terms of these numbers, the instantaneous total number of
particles in the region of interest is

Fed
N= Z n;,
i=1
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and the mean square fluctuation in this number is
((ON)*) = ([N - (N)J*) = (N*) — (N)?
= Z [{nin;) = (ni)(n)). (a)

ij=1

These relations are completely general. A simplification is found
by considering the case in which different particles are uncorrelated
with each other and this lack of correlation is due to a very low
concentration of particles. These two physical considerations imply

(min;) = {n;){(n;) for i#j (b)

(see Exercise 3.17), and
(n;) <1, (c)
respectively. Further, since n; is either zero or one, n? = n,; and hence
(n3) = (m) =(ny), (d)

where the last equality follows from the assumption each cell is of the
same size or type. Hence, on the average, each cell behaves

identically to every other cell.
The insertion of (b) into (a) yields

(6N = 5, () = (m)?),
and the application of (d) gives
((N)?) = m{ny)(1 — {ny)).
Finally, from (c) we arrive at
((dN)*) =~m(n,) = (N).

By itself, this relationship is already a remarkable result, but its
thermodynamic ramification is even more impressive.

In particular, since the region of interest is described by the grand
canonical ensemble, we know that (see Sec. 3.5 and Exercise 3.15)

((8N)*) = (8(N)/3Bu)g,v-
Hence, for a system of uncorrelated particles, we have
(8(N)/3Bu)s,v=(N),
or dividing by V and taking the reciprocal
(8Bu/dp)s=p7",
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where p = (N)/V. Thus, by integration we have
Bu = constant + In p.

Further, from standard manipulations (see Exercise 1.14)

(8Bp/3p)s = p(3Bu/dp)s =1,

where the first equality is a general thermodynamic relation and the
second applies what we have discovered for uncorrelated particles.
Integration yields

Bp =p,

where we have set the constant of integration to zero since the
pressure should vanish as the density p goes to zero. This equation is
the celebrated ideal gas law, pV = nRT, where we identify the gas
constant, R, with Boltzmann’s constant times Avogadro’s number,
No:

R=k BNO'
In summary, we have shown that the assumption of uncorrelated
statistical behavior implies that for a one-component system

p ebu
and

Bplp=1.

Generalizations to multicomponent systems are straightforward and
left for Exercises.

3.7 Alternative Development of Equilibrium Distribution
Functions

The approach we have followed thus far begins with a statistical
characterization of equilibrium states and then arrives at the ine-
qualities and distribution laws we regard as the foundation of
thermodynamics. Alternatively, we could begin with the second law
and the Gibbs entropy formula rather than deducing them from the
principle of equal weights. In the next few pages we follow this
alternative development.

Extensivity of Entropy

Since the Gibbs entropy formula is our starting point, let’s check that
it satisfies the additivity property (extensivity) that we associate with
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Entropy Entropy
S,q SB

Fig. 3.6. Two independent subsystems A and B.

entropy. Consider a system contained in two boxes, A and B (see
Fig. 3.6). Denote the total entropy of the system by S, 5. If the entropy
is extensive, S,z = S, + Sz. From the Gibbs formula

Sap=—kp E Z Pap(va, vg) In Pip(ve, vg),

Va Vg

where v, and vy denote states of the subsystems A and B,
respectively. Since the subsystems are uncoupled,

Pip(va, vp) = Pa(v4)Ps(vs).
Thus

Sap = —ks E 2 Pyp(va, vg)[In Pas(va, vg)]

Ya Vs

= —kg 2 Pg(vp) Z Pa(va) In Py(v,) |
—ka Z Pa(va) 2 Pg(vs) In Pg(vsg)

=—kp Z Pa(va)In Py(vy) — kg 2 Pp(vg) In Ps(vs)
= SA + SB)

where the second to last equality is obtained from the normalization
condition. This simple calculation shows that the Gibbs entropy
exhibits the thermodynamic property S,z =S, + S5.

Exercise 3.13 Show that if one assumes the functional
form

S=2 Pf(R),

where f(x) is some function of x, then the requirement
that S is extensive implies that f(x) =c Inx, where c is an
arbitrary constant.
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The Microcanonical Ensemble

For an isolated system, the energy, E, the number of particles, N,
and the volume, V, are fixed. The ensemble appropriate to such a
system is the microcanonical ensemble: the assembly of all states with
E, N, and V fixed.

To derive the equilibrium probability for state J» B, we require
that the condition for thermodynamic equilibrium be satisfied.
According to the second law,

(63)15, V,N= 0.

In other words, the partitioning of microscopic states at equilibrium
is the partitioning that maximizes the entropy. We use this principle
and carry out a maximization procedure with the constraints

(E)=2 Ep, (a)
(N)=2 NB, (®)

and
1=2P. ©

In the microcanonical ensemble where E; = E = constant, and N, =
N = constant, conditions (a), (b), and (c) are all the same.
Using the Lagrange multiplier y, we seek a P, for which

6(S+y1)=0,
or, inserting Eq. (c) and the Gibbs entropy formula,
0=6{—-k32 FInP + yZP,}
i i
=2, 0P[—kgIn P, —ky + y].
]

For this equation to be valid for all 6P, the quantity in [ ] must
equal zero. Thus

InF= 4 X 2 = constant.

The constant can be determined from the normalization condition

1
1=2Pj=26constam52_=l<z 1>‘
j j i Q j

Q
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Thus
Q2 = the number of states with energy E.
In summary, for the microcanonical ensemble
1
F = 5, for E;=E
=0, forE;#E
and the entropy is

1 1
S=+k32§ln9=kBln;§:k31nQ.
The Canonical Ensemble

This ensemble is appropriate to a closed system in a temperature
bath. N, V, and T are fixed, but the energy is not. Thermodynamic

equilibrium now gives
O(S+ a(E)+7y1)=0,

where a and y are Lagrange multipliers. By combining !Eqs. (a), (c),
and the Gibbs entropy formula with the above, we obtain

2 [—ksIn P, — ks + aE; + y] 8P, =0.
i

For this expression to hold for all 6F,
[kgIn P —kg+aE;+y]=0

or E; — kg +
InP = @t "KpTY . (d)
kg
To determine a and y, we use the thermodynamic identity
6(E >]
— = T = temperature.
[ 88 lyn P

With Eq. (a) we find
(6(ENvn= ; E;oF,
and from the Gibbs entropy formula and (d) we find
L

= _kB E (SI?,‘EjQ’/kB,
j
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where the last equality follows from the fact that Y0P =61=0.
Note that in the variation of {(E), we do not alter E; since the
variation refers to changes in F, (i.e., partitioning of states) with the
energies of the states fixed. Dividing (5(E)),, y by (8S)y n yields

Combining this result with (d) and the Gibbs entropy formula gives

7

T
- (E) +kgT —yT
B~
Thus
YT =A+kyT,
where

A =(E) — TS = Helmholtz free energy.
In summary, the canonical ensemble has
PI' = e‘ﬁ[Ei—A],

where

Since F, is normalized,

SB=1=cMY b5

j j
Thus, the partition function, Q,

Q = E e—lsEl
j
is also given by
Q=e4

From thermodynamic considerations alone, it is clear that the

knowledge of Q tells us everything about the thermodynamics of our
system. For example,

5, P, e
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where p is the pressure, and

N el B )

where (E) is the internal energy.

Similar analysis can be applied to other ensembles, too. In
general, therefore, the principle of equal weights is equivalent to the
Gibbs entropy formula and the variational statement of the second
law of thermodynamics.

Additional Exercises

3.14. By applying Gibbs entropy formula and the equilibrium
condition

(5S)(E>.V,<N) =0,

derive the probability distribution for the grand canonical
ensemble—the ensemble in which N and E can vary. Your
result should be

P,=Z"'exp[-BE, + BuN,],

where v labels that state of the system (including the number
of particles) and

E=exp (BpV).
3.15. For an opeli multicomponent system, show that
(ONON,) = (3{N:)/3Bu)p.pus v

where 8N, =N; —~ (N;) is the fluctuation from the average of
the number of particles of type i, and u; is the chemical
potential for that type of particle. Similarly, relate
(6N,6N;ON;) to a thermodynamic derivative. Finally, for a
one-component system in the grand canonical ensemble, eval-
uate ((6E)*) and relate this quantity to the constant volume
heat capacity and the compressibility. The former determines
the size of the mean square energy fluctuations in the canonical
ensemble where density does not fluctuate, and the latter
determines the size of the mean square density fluctuations.

3.16. For 0.01 moles of ideal gas in an open thermally equilibrated
system, evaluate numerically the relative root mean square
deviation of the energy from its mean value and the relative
root mean square deviation of the density from its mean value.
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3.17. (a) Consider a random variable x that can take on any value in
the interval a<x <b. Let g(x) and f (x) be any functions
of x and let (- - -) denote the average over the distribution
for x, p(x)—that is,

b
(8= [ axgtp(o)
Show that

(8f)=(&){f)
for arbitrary g(x) and f(x) if and only if

px) = 6(x —xy),

where x, is a point between a and b, and 6(x — xp) is the
Dirac delta function,

6(y)=0, y#0
and

fsdyé(y)=1.

Note that according to this definition, O(x —xo) is a
normalized distribution of zero (or infinitesimal) width
located at x = x,,.

(b) Consider two random variables x and y with the joint
probability distribution p(x, y). Prove that

(FxE()) =) (g)
for all functions f(x) and g(y), if and only if

P, y) =p(x)p,(y),

where py(x) and p,(y) are the distributions for x and Y,
respectively.

3.18. Consider a system of N distinguishable non-interacting spins in
a magnetic field H. Each spin has a magnetic moment of size p,
and each can point either parallel or antiparallel to the field.
Thus, the energy of a particular state is

N

E_YI,'MH, n;==1,
i=1

where n;u is the magnetic moment in the direction of the field.

(a) Determine the internal energy of this system as a function

STATISTICAL MECHANICS 81

of B, H, and N by employing an ensemble characterized by
these variables.

(b) Determine the entropy of this system as a function of B,
H, and N.

(c) Determine the behavior of the energy and entropy for this
system as T— 0.

3.19. (a) For the system described in Exercise 3.18, derive the
average total magnetization,

(M) = <=§1 ;m.~>,

as a function of 8, H, and N.
(b) Similarly, determine ((6M)?), where

M=M- (M),
and compare your result with the susceptibility

(c) Derive the behavior of (M) and ((6M)?) in the limit
T—0.

3.20. Consider the system studied in Exercises 3.18 and 3.19. Use an
ensemble in which the total magnetization is fixed, and
determine the magnetic field over temperature, BH, as a
function of the natural variables for that ensemble. Show that
in the limit of large N, the result obtained in this way is
equivalent to that obtained in Exercise 3.19.

3.21.* In this problem you consider the behavior of mixed valence
compounds solvated at very low concentrations in a crystal.
Figure 3.7 is a schematic depiction of such a compound. We
shall assume the compound has only two configurational states
as illustrated in Fig. 3.8. The two states correspond to having
the electron localized on the left or right iron atoms, respec-
tively. This type of two-state model is like the LCAO

Fig. 3.7. A mixed valence compound conceived of as two cations plus an
electron.
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o @ w
@' — ‘@ Q@
(State 4) (State B)

Fig. 3.8. Two-state model of a mixed valence compound.

treatment of the H3 molecule in elementary quantum chem-
istry. In the solid state physics literature, the model is called
the “tight binding” approximation.

In the absence of the surrounding crystal, the Hamiltonian
for a compound is 9, with matrix elements

(A| %,1A) = (B| #,|B) = 0 (our choice for the
zero of energy),
(A %,|B) = —A.

The dipole moment of one of the compounds for states 4 or B
is given by

u=(Alm|A)=~(B|m|B),

where m denotes the electronic dipole operator. For further
simplicity, imagine that there is negligible spatial overlap
between states A and B; that is,

(A|B)=0 and (A|m|B)=0.

The solvent crystal couples to the impurity mixed valence
compounds through the electric crystal field, €. The Hamil-
tonian for each compound is

K = %, — mE.

(a) Show that when &€=0, the eigenstates of the single
compound Hamiltonian are

£)=75014) £18)),

and the energy levels are +A.

(b) Compute the canonical partition function for the system of
mixed valence compounds when € =0, by (i) performing
the Boltzmann weighted sum with energy eigenvalues, and
(ii) performing the matrix trace of e~#% employing the
configurational states |A) and |B). The latter states
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diagonalize m but not #,. Nevertheless, the two computa-
tions should yield the same result. Why?

(c) When & is zero, determine the averages (i) (m), (ii)
(|m|), and (iii) {((6m)?), where dm =m — (m).

(d) When €+#0, the crystal couples to the impurity com-
pounds, and there is a free energy of solvation, [A(%) —
A(0)]/N, where N is the number of compounds. Compute
this free energy of solvation by (i) first determining the
eigen energies as a function of €, then performing the
appropriate Boltzmann weighted sum, and (ii) performing
the appropriate matrix trace employing configuration states
|A) and |B). The two calculations yield the same result,
though the second is algebraically more tedious. (You
might find it useful to organize the algebra in the second
case by exploring the properties of Pauli spin matrices.)

(e) When &€ #0, compute (Jm|) and (m). Compare its value
with what is found when €=0. Why does (m) increase
with increasing &?

3.22. (a) Consider a region within a fluid described by the van der

Waals equation fp =p/(1—bp)— Bap®>, where p=
(N)/V. The volume of the region is L. Due to the
spontaneous fluctuations in the system, the instantaneous
value of the density in that region can differ from its
average by an amount §p. Determine, as a function of §,
p, a, b, and L°, the typical relative size of these
fluctuations; that is, evaluate ((6p)%)"?/p. Demonstrate
that when one considers observations of a macroscopic
system (i.e., the size of the region becomes macroscopic,
L?— =) the relative fluctuations become negligible.
(b) A fluid is at its “critical point” when

(8Bp/3p)s = (3°Bp/3p%)s = 0.

Determine the critical point density and temperature for
the fluid obeying the van der Waals equation. That is,
compute B, and p, as a function of a and b.

(c) Focus attention on a subvolume of size 1. in the fluid.
Suppose L’ is 100 times the space filling volume of a
molecule—that is, L*=~100b. For this region in the fluid,
compute the relative size of the density fluctuations when
p =p., and the temperature is 10% above the critical
temperature. Repeat this calculation for temperatures
0.1% and 0.001% from the critical temperature.
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(d) Light that we can observe with our eyes has wavelengths of
the order of 1000 A. Fluctuations in density cause changes
in the index of refraction, and those changes produce
scattering of light. Therefore, if a region of fluid 1000 A
across contains significant density fluctuations, we will
visually observe these fluctuations. On the basis of the type
of calculation performed in part (b), determine how close
to the critical point a system must be before critical
fluctuations become optically observable. The phenome-
non of long wavelength density fluctuations in a fluid
approaching the critical point is known as critical opales-
cence. (Note: You will need to estimate the size of b, and
to do this you should note that the typical diameter of a
small molecule is around 5 A.)

3.23. Consider a solution containing a solute species at very low

concentrations. The solute molecules undergo conformational
transitions between two isomers, A and B. Let N, and Ny
denote the numbers of A and B isomers, respectively. While
the total number of solute molecules N =N, + Ng remain
constant, at any instant the values of N, and Ny differ from
their mean values of (N,) and (Nz). Show that mean square
fluctuations are given by

<(NA - <NA>)2> =XaxgN,

where x4 and x are the average mole fractions of A and B
species; that is,

X4 = (NA>/N

[Hint:  You will need to assume that the solutes are at such a
low concentration that each solute molecule is uncorrelated
from every other solute molecule. See Sec. 3.6.]
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